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SOME SEQUENTIAL, DISTRIBUTION-FREE PATTERN

CLASSIFICATION PROCEDURES WITH APPLICATIONS

By

J. L. Poage
4

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

ABSTRACT

Some sequential, distribution-free pattern classification

techniques are presented. In many classification problems, the

observations on which the classification decision is to be based are

costly to measure. A sequential test seems appropriate since ob-

servations. are measured only until enough information is known to make 	 c

a decision with a certain level of confidence. Also in many cases, the

only information available about the pattern classes is a set of training

samples from each class. Since the underlying probability density

functions are unknown .4 distribution - free classification methods are

needed. The specific decision problem to which the proposed classifi-

cation methods are applied is that of discriminating between two kinds

of electroencephalogram (EEG) responses recorded from a human

subject - spontaneous EEG and EEG driven by a stroboscopic light

stimulus at the alpha frequency. Sequential, distribution- free methods_

are suitable since it is geaeraU,^ desired to terminate the EEG recording
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as quickly as possible and since there is no knowledge of probability

density functions underlying the EEG waveforms.

The classification procedures proposed make use of the theory of

order statistics. Estimates of the probabilities of misclassification

are given. One of the methods presented is an estimated version of

the Wald sequential probability ratio test (SPRT). This method utilizes

density function estimates, and in formulating this test, a new

probability density function estimate is proposed. Convergence in

probability of the estimate to the true density function is shown. The

other method presented is a sequential version of the separating hyper-

plane approach to pattern classification.

The procedures were tested on Gaussian samples and on the EEG

responses. Smaller error rates were easier to obtain with the

estimated SPRT. In particular, error rates as low as . 1% were obtained.
i

With sequential tests, it is possible to specify the probability of error

decisions before the test is conducted, and the experimental error rates

of the procedures agree with the specified error probabilities.
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1.	 CHAPTER I

INTRODUCTION

I.1 Pattern Classification Problem

In the pattern classification problem, a ap ttern is given that

was drawn from one of several pattern classes, and a decision must

be made as to which class the pattern was drawn. In order to classify

the pattern, a way must be found to characterize the pattern, and

then a method must be developed of processing the characterization

of the pattern to classify it. It is usual to attempt to characterize

the pattern as a set of s real numbers x 	 (xI x2,...,xs}. The	 Y'

components xi of the pattern vector are called features and are usually 	 -"{

measurements of various attributes of the pattern. The choice of
^z

features to characterize the pattern is called the feature extraction

problem. While any number of pattern classes is possible, this report

will consider only classification problems with two pattern classes 	 `s

C1 and C2 . Once the observation x has been characterized as a vector, 	 f
x

the problem of classifying x can be formulated as finding a scalar

function g(x) such that x is classified as coming from Cl if g(x) < 0	 r,

and as coming from C 2 if g(x) > 0.	 <f

In viewing the classification problem geometrically, each pattern

has been considered as a point in an s -dimensional space. Thus

g(x) - 0 is a separating surface that divides the sample space into two

regions corresponding to classifying the pattern x as coming from

Cl or C26
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In most meaningful classification problems, the two pattern

classes overlap to some extent and so are not separable in the

s-dimensional space. The objective in this case is to construct

a classification procedure that is optimal in some sense as regards

misclassifications.

Since a pattern can be treated as a set of real numbers, the

two pattern classes will be characterized in this report by the

probability density functions f (xl(:1) and f(xJC 2 ). This does not

mean the density functions are always known but means that the patterns

from each class can be treated as random variables with a particular

probability density function. It may be that the density functions;

reflect nois y in measuring the features, or it may be Lhat the

patterns themselves follow a particular density function.

Before proceeding to a more detailed discussion of pattern 	 ^.

classification methods, an example of a classification problem will

be given. t

r
1.2 Electroencephalograms	 a• -- ails  i n•  	 i o• mii	

1

The application of pattern classification techniques to the bio-

medical field has received increasing attention in recent years. One

specific area that has been studied is that of making decisions about

the state of a patient based on electroencephalograms (EEG). An

EEG is a recording of the electrical activity of the brain. From the

EEG waveform, some assessment can be made on the state of the patient;

for example the level of consciousness of the patient can be determined

S

t	 -.
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or some pathelogical conditions of the brain can be detected. The 	 A

electrical activity is measured by electrodes on the surface of the

scalp, and the EEG wave is generally considered to be a recording

of the gross activity of a large number of cells. An EEG response

can thus be considered to be a sample from a random process. The

pattern classification aspect of the problem now becomes apparent.

An EEG measured from a patient placed in a darkened, soundless

room isolated from external stimuli is called a spontaneous EEG. If

a light is flashed periodically into the patient's eyes, the resulting
.a^

EEG wave between two consecutive flashes is called an evoked response.

This report will treat a classification problem to determine whether

given EEG responses are spontaneous or evoked. As mentioned pre-- 	 ''

viously, in order to classify an EEG wave, a set of features to

describe the wave must be extracted, and a decision rule to classify

w
the set of features must be formulated.

2i

I.3 Feature Extraction_

Prabhu [1] has written a paper that discusses feature extraction

for the EEG classification problem. As recorded from the patient,

Although the flashing of the light can be readily detected by
merely observing the light, this thesis attempts to make the

`	 decision on the light by observing an. EFG response from the
y	 patient. The decision problem considered here is a first step

toward more meaningful problems such as determining the level or
unconsciousness of a patient during surgery. An unconscious patient,...
would react differently to a light stimulus than an awake patient.
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the EEC is a continuous waveform of the amplitude of the electrical

activity. The response between two cou3ecutive flashes of the light

is considered to be one sample. To facilitate the use of a digital

computer, the amplitude was sampled in time at a set frequency so

that each sample EEG response was a vector. if the sampling rate is

high, the dimension of the sample vector may be quite large. Since

the complexity involved in finding a suitable decision rule increases

as the dimension of the sample increases, a subset of the features

may be selected to be used in the decision rule. Prabhu [1) has

developed a feature reduction scheme that picks a subset of the total

number of features. The features in the subset are selected 	 _.

according to their effectiveness in some sense for classification

purposes. Inis feature reduction method is Vdiscus sad ion detail i .

Appendix 11.1 and in Prabhu [1).

I.4 Structure of the Classification Problem

Now that a set of features has been extracted so that the EEG

responses can be represented as vector samples, a decision process

for classifying the EEG samples muss: be developed. The purpose of

this report is to develop some classification techniques that are

applicable to a class of problems represented by the EEG decision

problem. Before discussing the specific properties of this class of

problems, some general considerations of classification problems

will be presented.

In classifying an observation x, the two types of errors possible

are to decide x E C Z when actually x E C1 , called error of twe I,
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and to decide x E C 1 when actually x E C 2 , called error of type 11.

Criterions for evaluating the effectiveness of decision rules are

usually expressed in terms of the probabilities of these error

occurring. Let a = p(error of type I) and a - p(error of type II).

Three examples of criterions expressed in terms of a and s follow.

1.) If the prior probabilities of an observation coming from

1	 2	 1	 2C or C , p(C ) and p(C ) respectively, are known, then an expected

loss function associated with a misclassification can be expressed

as

E(loss of misclassification) - Llap(C1) + L20p(C2)

where L  and L 2 are the cost of errors of type I and type II. A

V

possible criterion is to formulate a decision rule to minimize

the expected loss function. The Bayes test [2] satisfies this

criterion.

2.) Another possible criterion is to require that a be below

a specified value and then minimize $. This criterion is followed

by the Neymann-Pearson test [3].

3.) If the number of observatiors drawn before making a decision

is variable aul not predetermined, a decision rule can be devised

where both a and 0 are below specified values. The Wald sequential

probability ratio test [4) satisfies these conditions and minimizes

the expected number of observations needed for a decision.

Another factor that influences the choice of methods for'solving

a classification problem is the type of information known about the
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two pattern classes. When the probability density functions describing

the pattern classes are known, there are many well-known decision

tests that can be used, such as those already mentioned. In many

cases, however, the density functions are unknown, but sets of samples

drawn from each class are known. These sets of ;samples from each

class are called training sets. When training sets are the only in-

formation available, pattern classification techniques must be formulated

from the training sets without using the density functions.

The development of a decision procedure then depends on two

factors:

1.) the information known about the two pattern classes., and

2.) the criterion.

The choice of a criterion is influenced by the information available,

e.g. if the density functions are unknown it is not possible to

minimize the actual probability of a misclassification but only s

perhaps an estimate of it. The criterion also embodies the

characteristics that are important to a particular decision problem,

such as the number of observations that may be taken before a classification

decision is made.

1.5 The Approach Taken in this Report

In the classification problem of the EEG waves mentioned in Section

I.2, the underlying density functions of the EEG waves are unknown.

But it is generally possible to record a series of EEG responses from .

the patient to use as training sets. Pattern classification pFocedures
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that do not involve knowledge of the underlying density functions

are called distribution-free. The techniques proposed in this

report are distribution-free.

In making medical tests on a patient, the measurements are often 	 i
costly and discomforting to the patient. Thus it seems desirable

to terminate the measurements as quickly as possible, but at the same

time the final decision on the state of the patient must be made with

a certain level of confidence. A sequential test appears appropriate

for many b io-medical classification problems since observations are

taken one at a time only until enough information is known to make

a decision with a certain level of confidence. In sequential tests,

the p(error of type I) and p(error of type II) can both be specified

before the test. Sequential tests are suitable for the EEG decision

problem since the stroboscopic light can be flashed and responses

sampled on demand until enough data has been gathered to make a decision.

As mentioned in the previous paragraph, sequential methods take

observations one at a time until the string of observations provides

enough information in some sense to classify the observations. If the

observations are vectors, a whole new vector observation of the several

features is taken. After each observation is taken,, three outcomes are

possible:

1.) decide the observations taken so far are from C1

2.) decide the observations taken so far are from C2

3.) decide to take another observation since not enough

Information is known to make a decision.

Stated analytically, the classification problem easing the sequential

method is to find a scalar function and two thresholds such that after
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t observations have been taken

b (x l , x 2 9. a s 9 x t ) g B
	

decide C1

B C g(xl9X29...,xt) C A

g(xl 9 x 2 ,0 s o 9 X t ) >, A

take another observation

decide Cz

Since the two thresholds can be set independently, it is possible to

construct a sequential test where the p(error of type I) and p(error

of type II) are both specified to be certain values. As an example,

consider Figures I.1 and 1.2. In the test using one observation

shown in Figure 1.1, two outcomes are possible, and a decision is

made according to which side of a single threshold the observation

lies. Since only one threshold is used, the probabilities of type I

and type II errors cannot be set independently. In the sequential

method of Figure 1.2, three outcomes are possible after each observation

is taken. The two thresholds that separate the three decision regions

can be set independently, and hence the probKbilities of errors of

type I and type II can both be set to specified values. Sit:ce only

enough observations are taken to make a decision with the confidence

that the p(error of type I) and p(error of type II) have certain

values, the sequential method has the merit that test procedures can be

constructed which require., on the average, fewer observations than

equally reliable test procedures based on a predetermined number of

observations [4].
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Decide x E C1
	

Decide x E C2

f(x I C1)
	

f(xIC?-)

p (error type 11)
	

p (error type I)

FIGURE I. I

Error Probabilities for Testing One Observation

Decide x E C'

	

	
Decide x E C2-

to ke

FIGURE 1.2

Error Probabilities for Sequential Test
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The classification procedures pro posed in this report are dis-

tribution-free and sequential. The methods are applicable in

classification problems where:

le} the density functions of each class are unknown but training

sets are known, and

2.) a string of a variable number of observations, all from the

same unknown class, can be sampled on demand.

1.6 General Outline

Two types of sequential, distribution-free procedures are presented

in the chapters that follow. In one, a series of thresholds are

calculated from training; samples, and each observation that is taken

in the sequential sampling is compared to a different pair of thresholds

depending on the number of the iteration. In the other approach, the
P". ^ I

same pair of thresholds is used throughout the sequential procedure,

and the scalar function of the observations that is compared to the

thresholds is altered at each iteration to include the information

contained in the new observation. Chapter II describes the former approach,
a

and Chapters III through VI are concerned with the latter. 	 i

Chapter II presents a brief review of the theory of order statistics

and then uses some results from order statistic theory to calculate a

set of thresholds for a sequential test. The thresholds are calculated

from the training sets in such a way that an estimate of the probability

of a misclassification is obtained. Multidimensional samples are

treated by transforming them into scalars with a linear transformation.
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Experimental results are shown for the procedure tested on both Gaussian

and EEG data.	 .,

Chapters III through VI are concerned with the estimation of

probability density funct^.ons from training samples and the use of

density estimates in a sequential test called the sequential probability

ratio test (SPRT). The.SPRT utilizes the ratio of the two density

functions representing the pattern classes. The ratio of the densities

is evaluated at the values of the observations and compared to two

thresholds. Since the density functions are unknown in the problems 	 K

considered in this thesis, estimates of the densities are used in the

SPRT. Chapter III discusses some approaches for estimating density

functions and surveys several known estimates. A new density estimate

is proposed in Chapter IV. The estimate is of a step-function force

where the boundaries of the steps are determined by the training 	 t

samples. The estimate is shown to converge in probability to the true

density as the number of training samples tends to infinity.

Chapter V besirs with a discussion of the SPRT, and then formulates

an estimated version of the SPRT with the new density estimate. The

new density estimate was chosen because of its low computer storage

requirement and ease of calculation. Experimental results are shown

for independent Gaussian samples. Some techniques for handling multi-

dimensional samples and dependent observations are discussed in Chapter VI.

The methods involve taking a linear combination of the features of multi-

dimensional samples or taking the sum of several dependent observations

so that only scalar samples are considered. The procedures are tested

on EEG data.



CHAPTER II

A SEQUENTIAL DISTRIBUTION--FREE PATTERN CLASSIFICATION

PROCEDURE USING ORDER STATISTICS

This chapter presents a sequential,distribution free pattern

classification procedure that makes use of some results from order

statistics. The material in this chapter is self-contained, and

future chapters do not depend.on what is developed here.

II.1 Introduction

The algorithm that follows assumed the type of prior information

and criterion listed in Section 1.5 namely that a training set from

each class is known and the test is to be sequential. One popular

method of solving the classification problem with training sets is to

place a hyperplane between the two sets of training samples that

separates the two classes of samples as much as possible. An observation

is classified according to which side of the hyperplane it lies. Generally

such algorithms provide no direct estimate of the probability of mis-

classification, and the decision is made based on examining only one

observation. Henrichon and Fu [5] have formulated an algorithm which

partitions the sample space into recision regions by training on sample

sets of known classification and uses order statistics to find an upper

bound on the misclassification probability. This chapter presents a

method which attempts to improve the error in classifying observations

from inseparable classes by taking several observations before deciding

on classification. The observations are drawn sequentially. A distribution-

free estimate of the probability of misclassification is presented. The

remainder of the chapter describes the algorithm and experimental results.

v

.x
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11.2 Assumptions

The method is designed to decide if an unknown observation

belongs to one of two classes which shall be referred to as class 1

and class 2. The algorithm is trained on sample sets of known

classification and is distribution free. The following assumptions

are made about the samples:

i. that a training set from each class is known

ii. that the samples are independently, identically distributed

in each class

that the random variables from each class are of the continuous tvpe

(thus the probability of any two samples being equal is

zerv)

IV, that se'v'eral obGar'v;ations, abli from thLa same ucakisvW-11 Clrass

to be classified, can be taken since the method is to be

sequential.

11.3 Order Statistics and Ordering Functions

Several properties of order statistics are used in this chapter.

A brief presentation of order statistics, inc^,ding some distribution-

free properties, is given in this section without proof. Appendix 11.3

may be consulted for a more detailed discussion of order statistics.

A random variable is of the continuous type if the distribution function
F(x) is everywhere continuous and the density function f(x) = F'+*x)
exists and is continuous for all x, except possibly at certain points
of which any finite interval contains at most a finite number. Thus

A	 .
F W - P(n C x)	 f(t)dt 161. A function F(x) which has these

—aa

properties is said to be absolutely continuous.

S

x
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LetX1X2,•,. , X^ be a set of n independent scalar random variables from
F

a continuous probability distribution function F(x). The samples

can be arranged in ascending order, X i < Xi < ... < Xi • For
1	 2	 n

convenience, let the samples be relabeled, Y IWXi ,Y -Xi 0 ..,Yn7Zi , so

	

2	 2	 n

that Y1 < Y2 < . • . < Yn.
 

In the set (Yl , Y 2 , ... ,Yn) , each member Yi

is called an order statistic. If X is a scalar random variable, F(X) is

^a
also a random variable. The random variable F(X) turns out to have

a uniform distribution on the interval (0,1). Recall that the random

variable F(X) can take on values between 0 and 1, and F(X) - p(n L X).

So it is equally likely for any random sample X that p(n 4 X) be anyi0here

between 0 and 1. The expectation of F(Yi) - F(Y i) can be shown to be

E  (Y^) °' F (Yi ) ]1	 > i	 (II.1)

Thus

k
o-

E[F(Y+l) - F(Y)]	 n+1	 (11•2)

It is observed that n random variables thus arranged in ascending

order partition the density function into n+l parts. The expected

value of the probability of a sample falling between any two neigh-

boring order statistics is 1/ (n+l), The variance of [F(Y,)-F(Yi)

can be shown to be

E[(F(Y^)-F(Yi))-E(F(Y ) -F(Yi))^2	 ,-i)^n-j+i+1) •	 (I1.3)
(1!+1) (n+2)

For dealing with multi dimensional samples, ordering functions

are used to transform the vector samples onto the real line. Let X

be a multidimensional random variable with a continuous distribution

r^

Random variables are denoted by capital letters.
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function F(x). If W = g(X) is a random variable with a {)ntinuous

distribution function G (w) , then g (x) is an ordering function.

Kemperman [71 has shown how the sample space can be partitioned using

a class of ordering functions so that the distribution of the

probability of a future observation falling in any partition can be

found. An example of using one linear ordering function for partitioning

the sample space is given in Figure II.1. For the random sample Xl*X29060,Xn

from the multivariate, absolutely continuous distribution function F(x), if

the transformed vectors are ordered, g(X i ) < g(Xi ) < ...< g(Xi ) and
I2	 n

	

relabeled, W  = g (Xi )$ W2 = S (X i ) , ... , 
W 
	 g (Xi ) then

$	 2	 n

E [ G(W
i
 )-G(Wk} j ^	 j > k	 (II.4)

a E (p (g (x ik ) < g (x) < g (xi 
i 
M

The expected probability of a future observation falling in the block

partitioned by g (xi } and g (x } is 
Jul 

for j > k. For example,
^	 k

let g (xl , x2 , . . . ,xs) aIx1+a2x2+...+ sxa be a linear function and

let xl,x2,...,xn be a set of n vector samples. Then if the trans-

formed samples are arranged so that g (xi ) < g(xi )< ... <g(xi ),

	

1	 2	 n
then the expected probability of a future observation falling in the

segment between the planes g(xi ) and g(xi ) is n + l independent
j+l

of the choice or g as well as the underlying distribution for x.

Ordering functious and order statistics are discussed more full*

in Appendix 11.3.

p	 5	 ..nY .tz_ ^v -r_.^^	
-

1

3
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Given sample set x, , x 2  • • , x  of two dimensional vectors
from density f (x

g(x) e a, X1 +a,x

. 1.. v.......—.-- 
n + 1 rv

n '—w' n v n .w n . .... n . n r n vv 11 vs n we nv

density f 	 lie within each segment •

Figure Il l 1
Exile of Linear ordering Function
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11.4 The Algorithm

11.4.1 Use of Two Thresholds

In dealing with multidimensional samples, this chapter uses the

same ordering function throughout for any one testing procedure. The

use of a single ordering function may not be optimal for many data sets,

but for some unimodal densities with one region of overlap the

shapes of the data sets are such that the use of a linear ordering

function sufficiently separates the two classes. Utilizing different

ordering functions for different iterations requires considerably

more computation and is discussed furthar in Section 11.7. Of

course, for scalar samples the question of an ordering function

does not arise. For whatever ordering function is chosen, the

object of the algorithm is to decide to which class an unknown
F

observation belongs so the ordering function chosen should separate
t

the two classes of training samples as much as possible.

A convenient type of ordering function to use is a linear

function. The distribution of the linearly transformed samples is

continuous. Figures 11.2 and 11.3 show two examples of linear ordering

functions. The two training sets in the figures cannot be separated by

a linear function. The function 9 2 (x) of Figure 11.3 separates to a

greater degree the two classes of training samples than the function

gl (x) of Figure 11.2. For a decision algorithm, the ordering function

g2 (x) is the better choice.

Many algorithms exist which yield a single linear separating

plane between the two classes of training samples. Ho and Agrawala [2)

r

v	 -
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x	 Class 1 sample
o	 Class 2 sample

Figureure R.2
Linear Ordering Function with Poor Separating Qualities

Figure 11.3
Linear Ordering Function with Good Separating Qualities



give a survey of many linear separating algorithms. The equation

of such a separating hyperplane can be used as an ordering function

since it has good separating qualities.

When a single ordering function is used on all training samples

the expected probability of a new sample falling in the segment

between any two planes, each placed through a training sample,

is the same as the expected probability of the transformed sample

falling between the transformed points of the order statistics. So

hereafter, the sample points will be considered to have been trans-

formed and all samples will be considered to be real scalars. Also

all observations to be classified will be assumed to have been trans-

formed into scalars. The two classes are assumed to have one region of

overlap. For two inseparable classes of samples, the samples of class 2

are taken to lie largely above those of class 1. See Figure 11.4 for

an example. A decision is made by comparing an unknown observation

with two thresholds which are placed in the overlap region.

If the unknown observation z lies above both thresholds, it is

assigned to one class; if z lies below both thresholds, it is assigned

to the other class; and if z lies between both thresholds, another

observation is taken as z lies in the region of overlap. The procedure

is applied to the new observation which is compared with a new set of

thresholds. It is assumed that all new observations come from the same

class. Figure 11.5 provides an exWl.e of the algorithm showing how

the thresholds, labeled A and B. change for each iteration. New observations

are taken until a decision is mdde, and then the algorithm is terminated.
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DECIDE CLASS 9
	

ANOTHER
	

DECIDE CLASS 2
SAMPLE

AREA IS PROBABILITY OF ERROR
	

AREA IS PROBABILITY OF ERROR
DECISION GIVEN SAMPLE IS FROM

	
DECISION GIVEN SAMPLE IS FROM

CLASS 2.	 CLASS 1 .

FIG. 11.4

Decision Regions for Sequential Test
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The new observation that is taken in each iteration of the algorithm

is compared with a new pair of thresholds that correspond to that

iteration.

11.4.2 Settin Thresholds for first Iteration

The thresholds are calculated by using some theory from order

statistics on the training sets of each class in such a way as to

give an estimate of the probability of a misclassification. The

n samples, now scalars, from each of the two training sets are

ordered separately in ascending magnitude. The ordering for one

class is

Xi < xi < ... < Xi	.

1	 2	 n

Let the training samples be relabeled for convenience

yl s xi , y 2 . xi ,...,yn W xi 	.
1	 2	 n

The training samples are now in ascending order,

yl < y2
 < * a

 . < yn n

If z is an unknown observation, then

p(classification error) a p(classif ication erroriz a class 1)p(z E class 1)

+ p(classification erroriz c class 2)p(z a class 2).

Thus the error probabilities for each class, p(classification error

1z a class j) j-1,2, can be calculated separately. The setting of

thresholds will now be examined in detail for one class, say class 1,
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and the ordered training set,y
l
 < y2 < .. p < yn , will be considered

to be from that class. The following discussion of setting thresholds

applies to either class.

Given the set of ordered statistics from one class,

Y1 < Y 2 < ... < Yn9

the probability that an observation from this class is less than any

member of the ordered statistic, Y 3 , is F(Yi ). From equation (II.1)

E(F(Y3 )) = i	 (IIA)
n+1

An estimated 100j/(n+l) percent of all future observations lie below

Y  (or 100(n+1-j)/(n+l) percent exceed Y .) Figure 11.6 gives an

example with the two training sets together. The overlap region of

the inseparable training sets has been taken to be at the higher end

of the class 1 order statistics and lower end of the class 2 order

statistics.	 F

In the following formulation of the thresholds, A(k) represents

the upper threshold and B(k) the lower threshold where k represents

the number of the iteration of the sequential test. A(k-1) will now

be determined in such a way that p(classification erroriz E class l)

can be estimated. If the first unknown sample lies above both thresholds,

it will be classified as belonging to class 2 which would be an error.

If it lies below both tRresholds a correct classification of class 1

would be made. If it fails between the thresholds, another observation

should be taken. She Figure II.7. To obtain an estimate of the
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CLASS 1 TRAINING SAMPLE	 CLASS 2 TRAINING SAMPLE

AN ESTIMATED 100 j PER CENT
OF CLASS 2 DATA POINTS LIES
BELOW THE j - th SMALLEST
VALUE OF THE n-DIMENSIONAL
TRAINING SET OF CLASS 2.

AN ESTIMATED 100 PER CENT
OF CLASS 1 DATA POINTS LIE
ABOVE THE ; - th LARGEST
VALUE OF THE n-DIMENSIONAL
TRAINING SET OF CLASS 1

FIG. 11.6
Estimating Probabilities from Training Samples

ti
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Thresholds for Sequential Test
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ne —1 TRAINING SAMPLESOF nr2 
SAMPLES 
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n ^i SAMPLES
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FIG. 11.8

Estimating Thresholds for Sequential Test
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probability of an observation from class 1 falling above the upper

threshold, the number of training samples from class 1 that fall

above the threshold A(k=1) can be used.

Let the threshold A(k-1) be set equal to the value of the

ne -th largest order statistic of the training set of class 1,
1

A(W) - 
Yn -n1

 +1 n then nle -I training samples lie above
el 	1

A(k-1). The superscript on n represents the number of iterations

and the subscript the class. Thus

E[p ( z1>A (k=1) I zlECl 1 ° E[I-F(Yn -nl +1)1
1 e 

and from equation (II-1)

E(1-F(Yn -nl +1)) = 1-E(F(Yn -nl +1))
I el 	1 e1

n1-ne +1
= 1_ Î --

nl + 1

9

r'

Yw

r

n
1
el

E ( 1°F (Yn -nl +1)) Can +1
1 e 	 1

(II.7)

If p is the desired probability of error for class 1 on this iteration,

them n  should be cha 3en so that
e 

n
1

el
nl+^,	 P
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and so solving for n1
1

ne = (nl + 1)p .
1

(11.8)

When ne is not an integer, the greatest integer less than neis
1	 1

used; [w] will represent the largest integer less than or equal to

w. A(k=l) is then set equal to Ynl+1-[ne ].
1

B(k=1), the error threshold for class 2, is determined similarly

from class 2 training samples. As the error region for class 2 lies

at the lower end of the ordered training samples, B(k=1) is set equal

to the n1 -th lowest order statistic of class 2,
2

n1
e2

E (F (Y	 ))	 n 2	 °
e2	2

(11.9)

nI is chosen such that p is the desired error probability of an
a

observation from class 2 on the first iteration,

n1
e2

n2+1 = p

ne1 = (n2 + 1)p
2

(1I.10)

B(k-1) is set equal to Y [nl	 The setting of A(k=l.) and B(k-1) is
e2

illustrated in Figure 11.8.
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j

11.4.3 Thresholds for the Second and Following Iterations

If the observation on the first iteration falls between the
i-

thresholds, a second observation is taken. Figure 11.5 provides an

example. New thresholds are found for testing the second observation.

The probability of the first observation falling between the thresholds

can be estimated by counting the number of training samples between

the thresholds for each class. Again taking class 1, let n r
 be the	

x•

1

number of training samples between the thresholds on the first iter-

ation, see Figure 11.8. Then an estimated (n
r 

+ 1)/(n +1) percent
1	 s :E

.t'

of the area under the density function for class 1 falls in the region y

between the thresholds.

Actually the lower threshold is based on class 2 so that there

is not one whole interval between class 1 sample points but a

fraction of one at the lower end of the region between the thresholds.

In practice, n  is usually large enough that counting the internal
1

as a whole has a negligible effect on n  .
1

For a decision to be made resulting in a classification error an

the second iteration, the first observation must fall in the region

between the thresholds of the first iteration and the second observation

in the error region of the second iteration. If p is the deeired

probability of error for the second iteration, then we desire

p(lst observation between thresholds)p(2nd observation in error region) - p

p (B (k-l) < z  < A(k,-I) )p (z2 > A(k=Z) ) - p
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But p (B (k=1) < z 1 < A(k=l) ) and p ( z2 > A(k=2) ) are unknown, and

they can only be estimated. So the number of training samples

in the error region for the second iteration is chosen as

n  + 1 n2
r 
	 el

n1+1	 n1+1 a P

n + 1
n^ 	 ^	 {n 1+1}p

1	 n +1
r 

2_ n1 + 1 1
net r n1 +^ nel

r1

(11.11)

from equation (11.9). A (k=2) is set equal to the [n2 ]-th largest
1

training sample, A(k-2) = Y  [n2 ] +
1° B(k=2) is set similarly

1
using the training samples of class 2. It is desired that

p(B(k-l) < z1 < A(k-1) )p(z2 < A (k=2)) - p which can be estimated

by considering

n2
e2

n2+1 	 P'

n1 + 1
r2

n2 + 1

and solving for n2
2

	

n2	
n2+1	 rat + 1 1

	

e	 2	 (n2+1)p	 1 ---- n 
	 .

2	 n  +1	 n  +1	 2
2	 2

(11.12)
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B(k=l) is set equal to Y[n21°
e

nl+1

	

As Z	
> 1, then by referring to equation (II.11) it is

n +1
r 

seen that n  > ne which implies A(k-2) c A(k=1), and for similare
1	 1

reasons B(k=2) :^ B(k=l). Thus the thresholds for the second

iteration will be closer together than the thresholds for the first

iteration.

The number of training samples between the thresholds for

the second iteration are counted for each class, nr and n 2 . Then
1	 2

n3 and n3 can be calculated. For an error decision on the third
el 	e2

iteration both, the first and second observations must fall bet'aeen

their respective thresholds, and the third observation must fall in

the error region.

The calculation of the thresholds continues, with the thresholds.

for each iteration being calculated simultaneously. Figure 11.5

again gives an illustrative example. In general,

p (B (k=l) < z  < A(k=1)) ...p (B (k-1) < zk-1 < A(k-1) )p (zk > A (k) ) a p

The estimated form is

(n1 +1)	 (n2 +1)	 (nk-1+1) k

11(n +1)	 ((n +l)	 .. ^ (n	 l1 1}	 (n 1 +l)	 p 	 (;1.13)

r'



and solving for ne
1

k	 (n1+1)	 (nl+l)	 (n1+1)

1	 1	 1

	

nk - (n1+1)	 nk-1 .11 CC(II s 1J)el	 (nk-1+1)	 el
1

Similarly,

nk	 (n2+1) n
k-1 (1l.lb)

	

e2 (nr-1+1)	 e2
2

s

A(k) is set equal Y	 k	 and B(k) equal Y k . As	 {
nl e 1+1	 In-Cn e l

	1 	 2
nl+l	 n2+1 f

nk
 1+1 > 1 and nk--1+1 >1, the bounds move closer together.

rl	r2

Eventually, for some k, the thresholds will cooss. This happens

when ne and nkb ecome sufficiently large that B(k) > A(k). The
1	 2

algorithm will be terminated for this value of k, and the two thresholds

are replaced by a common threshold. Let this terminal value of k be

called N. A decision will be made at k N if the algorithm proceeds

this far. In the examples to follow the common threshold was set by
Y

averaging the thresholds for k - N-1.

A(N) = B(N) - [ A (N-1) + $ (N-1)1/2 .	 (11.17)
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This could of course be set in other ways.

The algorithm as presented has taken the probability of error

and ending on each iteration to be the same for each class,

p(error decision and end on k-th iterationjunknown E C1)

= p(error decision and end on k-th iterationjunknown E C2) P.

These could be set equal to different values if so desired. Although

then the prior probabilities of which class the unknown observation

belongs, p(unknown E C1) and p(unknown E Ca ), should be known in

order to calculate the estimated error decision probabilities.

11.5 Application of Algorithm

The application of the algorithm can be divided into two parts,

the formulation of the thresholds and the use of the thresholds to

classify an unknown observation. This section briefly reviews the

steps involved in both parts. Figure 11.5 can be referred to as an

example.

First the thresholds are set using training sets from the two

classes. An ordering function is chosen that separates to some

degree the two classes of training samples, and the training samples

are reduced to scalars using the ordering function. The training

seta of scalars from each class are ordered,

Class 1 e yi < y2 < ... < yn	 Class 2 t y1 < y2 < ... < yn
1	 2

The parameter p is chosen. The number of samples in the error

region for the first iteration is found,

t%

:7
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i

S

ne = (nl + 1)p	 ne = (n2 + 1)P
2

and the thresholds are set,

A(k=1) = Y  +1-[nl ]	 B(k=1) ` Y[nl ]
1	 el	 e2

The number of training samples between B (k=1) and A(k= l.) in each

class are counted, nr and nz respectively. Then for the second
1	 2

iteration, k=2,

2	 nl+l	 1
=	 n

net n  +1	 e1
r 

2__ n2+1	 1

net n  +1 net
r2

A(k=2) = Ynl+l-[n2
1

B (k= 2) = Y [n2 ]
e2

Then n2 and n2 are determined by counting the number of training
1	 2

samples of class 1 and class 2 between B(k-2) and ,A(k-2). For any

iteration k,

"F

k	 nl+l	 k-1
nel nk-1+l el

r1

k_ n2 + 1 k-1
net -- nk-1+1 net

r2

	

A(k=k) = Yn1+1-fn k ]	
B(kuk) = 

Y [nk ]

	

 el	 e2

Determine nr and	 by counting the samples of	 class 1 and class 2
1	 2

between B (k) and AM. Whenever A(k) C, B (k), call k = N and set one

common threshold AM $ B (N) .
Y

C^
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In applying the algorithm to classify unknown observations

each observation is first reduced to a scalar by using the ordering

function. The first observation z  is compared to the thresholds

A(k=l) and B (k=1) . If

z  < B(k=1)
	

decide class 1

z  
> A(k=1)
	

decide class 2

B(k=1) < z  < A(k-I)	 take another observation

If another observation is taken, z 2 , then it is similarly compared

to A(k-2) and B(k=2). At each iteration that is needed, the bounds

for that iteration are used. For any iteration k,

z  < B(k)
	

decide class 1

z  > A(k)
	

decide class 2

B(k) < z  < A(k)
	

take another observation

If the procedure goes until k = N, a decision will be made then as

there is only one threshold.

11. 6 Estimated Probabi.liq of - Misclassification  
^wr+Y l^i^	 Ir9	 n ^	 ^I

The probability of misclassification for the algorithm will

now be considered. The algorithm can end on only one iteration

so the events of ending with an error decision on the k th iteration

and of ending with an error decision on the J-th iteration are

mutually exclusive for k 0 J. The probability of error can be

expressed as
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N

p(error decision) = I p(error decision and end on k-th iteration)
k=1

where

p(error decision and end on k-th iteration)

= p(error decision and end on k-th iterationjunknown c C1)

• p(unknown E C1)

+ p(error decision and end on k-th iterationlunknown t C2)

. p (unknown E C2 ) .	 (11.11)

Consider first the case where the unknown observations z19z2'°°'9zk

are from class 1. Then

p(error decision and end on k-th iterationjunknown a C1)

- p(B ( l ) < z  < A(l))Y(B(2) < z 2 < A(2))ae.

p(B(k-1) < zk-1 < 
A !k-1))P(zk ' A(k)).

(11.20)

All the thresholds are calculated from the training samples, and so

p(B(l) < z  < A(l))9p(B(2) < z 2 < A(2)),.. d,p(b(k°-1) < zk-1 < A(k 1),

p (Zk > A (k•) )

are random variables. Also since the thresholds were calculated from

the same training samples, these random variables are dependent, and

f

3

'S.

the expectation of the left hand side of equation (11.20) is not

equal to the product of the expectations of the twins on the right

hand side. As it is not readily apparent how the true expectation

'V
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can be found, the expectation is approximated, however, by

p(error decision and end on k-th iterationlunknown E C 1)

= Ep(B(1) < zl < A(1))Ep(B(2) < z2 < A(2))...

Ep(B(k-1) < 
zk

-1 < A(k-l))Ep(zk > A(k)).	 (I1.21)

The symbol p is used to denote that the term is an approximation

of the expected value.

By the construction of the algorithm,

p(error decision and end on k th iterationjunknown E C 1) p.

(11.22)

A similar procedure can be used to show

j
p
n (error decision and end on k-th iterationjunknown E C2) p.

(11.23)	
s

Thus from equation (11.19),

p(error decision and end on k-th iteration)

p • p(unknown C C 1 ) + p°p(unknown E C 2) p,

and so u

p(error decision}	 p
ksl
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^(error decision) = Np. 	 (II.24)

As mentioned previously, Np is not the true expected probability

of error since the product of expectations of dependent random

variables was taken. Loosely speaking if there are one hundred

training samples, the addition of another sample provides more

information to revise the estimate of the probability of error

than if there are one thousand samples. Thus as the number of

Since p is a specified parameter, it can be shown that Np <- 1 by
showing that N. the maximum number of iterations, has an upper
bound of 1/p. N will have its largest value when the probabilities
of an observation falling between the thresholds and not being
classified at each iteration have their largest values. Consider
first the probability of an error decision given the string of
observations is from class 1. At each iteration, Ep(zk :^, A(k))
is determined before Ep (B(k) < zk < A(k)) is determined, and thus
the upper bound on Ep(B(k) < zk < A(k))  is 1-Ep (zk 3 A(k)) . For
convenience, let Pek = Ep(z ^i A(k)) and so 1-Pek is the upper
bound on Ep(B(k) < zk < A(k). Using these upper bounds, the
thresholds at each iteration are found by setting

(1-pet) (l-pet)' .. (",-pe(k_1))Pek - P

as is done in equatiors(Il.13) and (II.14). For k = 1, the
thresholds are set such that pel - p, and by induction, it can be
shown that Pek a P/[ 1-(k-l)p) whew the above equation is used to
determine the thresholds, The thresholds are determined so that
the fraction of training samples exceeding A(k) is .equal to pek.
Since the fraction cannot exceed one, the procedure for generating
the thresholds at each iteration will stop before Pek equals 1.
Thus Pek - p [la (k"1)Pl 4 1 which implies - k 4 1/p. The analys-*s

is similar when the string of observations is assumed to be from
class 2, and the same upper bound on k is found. Thus N 6 1/p
and ^(error decision) 4 1.
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training samples approaches infinity, the knowledge of

p (B(k) < z  < A(k)), k=1,2,...,N, becomes precise and the bias in

the estimates of the probabi lity of error would be expected to

tend to zero. Also in the next section, a comparison is made of

experim,,^ntal results of the algorithm trained on one set of training

samples with results of using a different set of training samples

to calculate the pair of thresholds at each iteration. The use of

a different set of training samples to calculate the pair of

thresholds at each iteration makes the terms p(B(k) < z  < A(k)),

k=l,2,...,N, independent so Np is actually the expected probability

of error. In most practical problems, however, using a different

set of training samples at each iteration would require an excessive

number of training samples. The experimental comparison showed

there was little effect on the experimental results of using the

same set of training samples. A slight approximation was also intro-

danced when the value calculated for the number of a training sample

was not an integer and the largest integer less than the value was

used. These approximations seem unavoidable when the number of train-

ing samples is finite.

If Np is not near the desired value, p can be varied, which will

change N and hence Np. N is dependent on the value of p chosen, and

generally for smaller p, N becomes larger. N is also dependent on

the two sets of training samples. If the training sets have a large

overlap, N will be large. This is to be expected as the region of

indecision is large so more iterations will resu t.
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The probability of making an error decision on the N-th or

last iteration is actually not equal to p as the two thresholds
a
z

were combined into one instead of allowing them to cross. The

actual error estimate can be made by counting the number of

training samples for class 1 and class 2 which would result in
z	 j

an error decision on the N th iterations. Let e.be the number
l

of training samples of class 1 above A(N) B(N) and me be the 	 f
2

t	 number of training samples of class 2 below. Then

p(errror decision and end on N-th iteration unknown c class 1)

nl +1 n2 +1	 nN-1 +1 mN
r1	rl	 r1	 el

n1+1	 n1+1	 n1 + l al+l

N	 1P

met n 
e1

from equation (11.14) where n 	 is defined by equation (11.1+).
1

A similar equation applies to class 2. The total estimated probability

of error is

	

p (error decision) = (N-1)p +	 N p (unknown e clasi 1)
1 n

el

+ meN	 N p (unkno*^n P.class 2)
2 rae

2

As p is small, Np gives an adequate expression for p(error decision)
t

for most values of N and p-

Ara intuitive explanation for the closing together of the thresholds

-- L

r
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can be given. In order for the algorithm to proceed to the second

iteration, the first observation must fall between the first two

thresholds. For a decision to be made resulting in an error on the

second iteration, the second observation must fall in the error

region. Let p be the desired probability of makitg a decision which

ends in an error at each iteration. To obtain p on the first iteration,

the probability of falling in the error region should be p. For an

error decision to be made on the second iteration, the first obser-

vation must fall between the thresholds and the second observation

In the error region. The probability of this is p(B(k=1) < z1 < A(k=l))-

p (z2 E error region for k=2) = p. As p (B (k=1) < z  < A(k=1) ) < 15

P (r 2 E error region for k=2) is greater than p (z1 E error region for

k=1), and thus the error decision region for k-2 can afford to be

larger than for k=1 leading to a smaller overlap region. The same

argument applies for larger k.

The setting of the estimated p(error decision on iteration k)

equal to p for each iteration was done so that an estimate of the

probability of error for the algorithm could be obtained. This also

resulted in a finite number of iterations for the algorithm. The

probability of error is estimated looking from the beginning of

the test before any samples are taken.

11.7 Remarks

In treating multidimensional samples in the experimental results

of the neAt section, the same linear ordering function was used:.in

M:-.--
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determining the thresholds for all the iterations. Using the same

linear ordering function throughout the algorithm may be suitable

when Cie data comes from unimodal densities which have one region

of overlap between the two classes. For some sample densities,

another type of ordering function might be preferable. The most

desirable procedure would be not only to locate a-plane for each

threshold, but to determine the orientation of the plane in order

to optimize the procedure. At each iteration, all coefficients

{ai ) in the linear ordering function aeI+y2+...+asxs - a 

would be determined instead of finding only o. For example, the

number of training samples to be placed in the error region for each

threshold, nk and ne , could be found as explained previously. For

1	 2

each iteration, a plane would be placed through a training sample

of class 1 so that ne samples from class 1 lay on the error decision
1

side of the plane and the plane oriented so that the number of training

samples of class 2 on the some side was maximized. Such a technique

would set ^(error decision on k-th iterationlclass 1) p and maximize

the probability of a correct classification for a class 2 observation.

A similar procedure would be applied using class 2 training samples

to the other plane and the class 2 error region. This method would

give Uerror decision on k-tea iterationlclass'i)- p, i=1,2, and

would also minimize the number of iterations. But this technique

requires a considerable amount of computation. Such a procedure

might have to be repeated several times to find the best training

i

k

F

r
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sample through which to place the plane, and then the computation

must be done for the planes at each iteration. The choice of an

ordering function for multidimensional sample pattern classification

is an area in which further work can be done. Of course for scalar

samples the question of choice of an ordering function does not

occur. For the examplagi In the next section, a single linear ordering

function was thought to be sufficient considering the extra amount

of computation required to orient a different plane at each iteration.

11.8 Enerimental Results

The algor3.that was tested on Gaussian random variables and on

electroencephalogram (EEG) signals, The results for scalar Gaussian

samples are given in Table II.1. Several training set sizes and

several values of the parameter p are given. The algorithm for

each set of parameters was tested on one thousand observations from

each of the two classes.

The algorithm was also tested on EEG signals which are discussed

in Section 1.2 and in Appendix 11.2. The EEG signals are from a

subject with a strobe light flashing in his eye or from the subject

with the light off. It is desired to decide on the basis of EEG

signals if the light is flashing or not. The signals with the light

off will be called class 1 and with the light on class 2. The EEG

responses were continuous signals of 100 millisecond duration, and

the responses were sampled every millisecond to obtain a one hundreg

dimensional vector for each sample. A feature reduction scheme of
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Parameters Experimental Results

Number of N .. maximum Average number Estimated Class 1 Class 2
training samples number of experimental error mean=-o8 mean= a8

P for each class of iterations iterations for rate	 A+p experimental. experimental

nl M n2 for decision decision_ error rate error rate

P : .01 99 12 4.74 4.54 .12 .0474 .0666

P U .01 199 9 4.03 3.95 .09 .0444 .0712

P 0 .01 399 9 3.93 3.70 .09 .0630 .0741

P w .01 999 7 3.3 2.90 .07 .11 .058

P $ .005 199 13 4.95 4.74 .0346 .0711

P M .005 399 13 5.02 5.12 .065 .0352 .0718

P s .005 999 10 4.33 3.89 .05 .065 .055

M

N

'	 ^	 a

Variance of both classes I

TABLE 11.1

Gaussian Experimental Error Rates

^^
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Prabhu [1, 81, which is explained in Appendix II.1, was used to

select a smaller number of features from the ion-dimensional

vector to make the testing procedure more manageable. For most

tests two features were used. Of the one hundred features, features

eighty-five and fifty-seven were selected as containing the most

significant information. A linear ordering function was used,

Y .57x57 + a85x85

The algorithm was trained on one section of EEG data from the subject

and tested on another section from the same subject. Table 11.2

gives error rates on the testing samples for several parameter p values.

The samples were taken serially as they appeared from the patient.

Five hundred testing; observations were used in all cases.

An examination of the EEG responses showed that the samplee are

correlated and nonstationary. The independence assumption of the

algorithm is violated. The nonstationarity means that the samples

are not identically distributed. The correlation of the samples

along with the nonstationarity contributed to the higher than estimated

error rates in Table 11.2.

To test the algorithm on data which was independent and uncorrelated,

one thousand serial samples of EEG waveforms were mixed together so

they no longer appeared serially as they were recorded from the patient.

The results for the mixed samples appear in Table 11.3. The experimental

error rates in this case agree more closely with the estimated error

rates. This indicated that all the assumptions of the algorithm are
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Parameters Experimental Results

Number of N as maximum Average number Estimated Class 1 Class 2
training samples number of experimental error (no strobe) (strobe on)

P for each class of iterations iterations for rate - Np experimental experimental
n1	n2 for-decision decision- error rate error rate

Class 1 -glass

p W .01 99 6 1.9 1.8 .06 .209 .0757

P M .01 199 7 2.22 2.55 .07 .186 .0612

p = 401 399 8 3.42 3.05 .08 .199 .0548

P W .01* 999 9 3.57 4.13 .09 .128 .066

p M .005 199 12 3.68 6.25 .06 .11. .0875

P M .005 399 11 3.91 4.38 .055 .132 .0789

P - ,005* 999 14 4.8 6.10 .07 .107 .013

o_p 0 .001' 999 40 13.9 20.8 .04 .0556 .0833

H
t-^
Bw

.P-

* Five features instead of two were used for these exgieriments.

TABLE 11.2

EEG Experimental Error Rates



Parameters Experimental Results

Number of N w maximum Average number 	 Estimated Class 1 Class 2
training samples number of experimental	 error (no strobe) (strobe on)

• for each class of iterations iterations for	 rate = NP experimental experimental
n^	 n2
f

for decision decision- error rate error rate

P M .01 99 10 4.81 5.15	 .l. .0962 .103

P w .01 199 10 4.63 5.88	 .1 .0925 .1295

P . .01 399 lQ 3.68 4.58	 .1 .054 .11

p M .005 199 16 5.95 8.33	 .08 .0357 .12

p M .005 399 15 5.05 7.58	 .075 .0303 .166

t,s
V1

TABLE 11.3

Independent EEG Experimental Error rtes

1.
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not met by the EEG waveforms as they are recorded from the a

patient.

Section 11.6 mentioned that the estimated probability of error

Np is biased since all the thresholds are calculated from the same

training samples. Table 11.4 shows a comparison of experimental

results of the algorithm trained on one set of training samples

with the results of using a different set of training samples to

calculate the pair of thresholds at each iteration. The examples

are Gaussian as appear in Table 11.1, and p = .01 was used for all

the results.

Number Estimated Class 1 Class 2
training samples error experimental experimental
in each class a Np error rate error rate

One training set .12 .0474 .0666
99

Different training .09 .01468 .0675
sets

One training set 199
.09 .044' .0712

Different training .08 .0947 .0655
wets

TABLE 11.4 Comparison of Error Dates for One Training Set
vs grveral Training Sets

The table indicates that using a different set of training samples for

calculating the pair of thresholds at each iteration does not give

significantly different experimental results than using one set of

training samples. The difference between the two estimated error rates
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decreased as the number of training samples increased.

II A Conclusion to Chapter II

The algorithm presented in this chapter is a sequential

approach to pattern classification for the case where the undc!r-

lying probability densities of each class are unknown but training

sets are available. When a linear ordering function is used, the

algorithm can be viewed as a sequential variation of the linear

separating plane approach to pattern classification. The algorithm

used a different pair of thresholds at each iteration of the

sequential test. The thresholds are calculated before the test

and are independent of the observations taken during thQ sequential

decision procedure. The method does require some prior assumptions

on the pattern classes. The classes should have one region

overlap such that when the multidimensional samples of the to ,

classes are transformed to scalars the new se:alar samples of one

class ]lie largely below the new scalar samples of this other class.

For example if one class of samples is surrounded by samples of the

other, the classes cannot be separated by a linear transformation.

A nonlinear transformation would have to be found.

The algorithm presented in this chapter used a different pair oil

thresholds at each iteration of `he sequential test, the next few

chapters present a sequential test where the same pair oa thresholds

is used throughout the test.
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Appendix T1. 1 - Feature Reduction and Separating_ Mne,rplanes

The feature reduction scheme used in this report for selecting

,Agnificant features out of a vector random Fample of many features

was developed by Prabhu [ 11, [ 81. A measure of effectiveness of

any particular feature for classification purposes is

u2 1

1	 2
iii + iii

where Pi and 
6ii 

are the mean and variance of the i-th feature of

class J. The criterion picks the feature that tends to maximize

the distance between the means of the two classes while minimizing

the dispersion about the means. Considering the combined effectiveness

of a group of features, the correlation between the features is taken 	 ,G
'S.

into account, and the criterion generalizes to

d (^1 - u2
}T(El + Z2-1 (PI - u2)

where Pi and EJ are the mean vector and covariance matrix of the

features under consideration from class J. Since the means and

covariances of the two classes are unknown for the examples considered

in this thesis, the means and covariances are estimated from training

sets of the two classes.

Let dm be the valve of the criterion in equation (11.1.2) when
A

m features are considered. the algorithm for selecting; features from a

l 2vector of s features, x = (x, x,..a,xs ) is
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1.) Select the first feature xi such that

	

(u - ui) 2 	(P - u2 2
max

1	 2	 1	 2

	

CF 
+ ail	 a + ^ji

and so

(u1 - u2)2
di

 W Q1 + ^2

2,) At each subsequent step after m features have been chosen
r

and 
m 

calculated, the increase in the criterion (del-dm) is computed

for each of the remaining features. The feature that gives rise to

the maximum increase is chosen.

Thus the algorithm at each step selects the feature that adds the

most to the effectiveness of the feature set already chosen where

the effectiveness is measured by equation (11.1.2). The feature

selection procedure is not truely optimal in that the subset of the

best m features is not necessarily a subset of the best m+l features.

To be truely optimal, the algorithm must search over all possible com-

binations of m features at each step. But such an exhaustive search

becomes quickly infeasible as the total number of features increases.

The separating hyperplane that was used for transforming vector

samples into scalars in this report is

^x + 
60 - 

0

-^...,
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where

ao M U + £2)T(ul - u2)

o = -2 
(11 1

- 
^2 )T( 1 + E2}-.1r,11 - 0

2 )	 (II.1.3}

f

The weighting vector a  maximizes

OL	 - u 2) ] 2
aT ( El + Z2)a

which is interpreted as the ratio of the distance between the means

of the classes to the dispersion of the classes along the direction a.

If the classes are Gaussian, N(u l ,^l) and ^t(u2 ,E 2) respectively,i
then ox + ^o is the separating surface that minimizes the probability

of winclassification with the prior probabilities of each class being

equal.
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Appendix 11.2 - EEG Data

f

A detailed discussion of the EEG data is given by Prabhu [ 1],

and much of the description presented in this appendix is based on

Prabhu's discussion.	 An electroencephalogram (EEG) is a recording

of electrical ectivity of the brain.	 The electrical activity is,

of the order of microvolts and is measured by electrodes placed

on the surface of the scalp.	 While the precise origins of the

electrical potentials is not yet fully understood, it is generally

agreed that the potentials result from the synchronous activity of

a large number of cells.	 In order to maintain some unif6rmity in

the EEG measurements, it is necessary to keep the patient in the

same psychological state during different recordings. 	 When the

recording is made from an alert patient in a darkened, soundless

room cut off from external stimuli, the EEG is said to be "spontaneous." sx

Since an EEG recording is the result of the combined activity of

many cells, an EEG signal can be considered to be a sample from a

random process. An example of an EEG is shown in Figure 11.9. The

EEG has been observed to have several dominant frequencies with the

most dominant between 8.5 and 10.5 c.p.s. This is called the alpha

frequency. An EEG record can be split into equal parts where the

length of each part is equal to the period of the alpha frequency. The

dotted line in Figure II.10 shows the average signal that results

K

Figures II.9, II.10, and 11,11 have been taken from Prrabhu [1 ].
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from averaging these parts.

While the spontaneous EEG represents the electrical activity

of the brain when no visual or auditory stimuli is present, a

different EEG signal can be produced by a flash of light into

the patient's eyes through closed eyelids. If a light is flashed

periodically at a frequency very near the alpha frequency, then

the EEG has the affect of being driven into resonance. The

EEG signal between two consecutive flashes is called an "evoked"

response, and the solid line in Figure 11.10 shows the average

signal of the evoked responses.

The classification algorithms tested in this thesis attempted

to distinguish between spontaneous EEG and evoked EEG. A signal over

one period of the alpha frequency was taken to be one sample.

The-EEG record used in this thesis was obtained from NASA through

the former Electronics Resea.•ch Center, Cambridge, Massachusetts. A

recording of ten minutes duration was done on a single person; in one
i

sitting from a pair of electrodes located in the left occipital-
3

parietal area. Both spontaneous and evoked responses were obtained in

the one recording. A stroboscopic light was flashed into the eye of

the subject through closed eyelids. The frequency of the flashing

was tuned to his alpha rhythm which was approximately 10 c.p.s.,

and thus a flash occurred every 100 milliseconds. The stroboscopic

light was blocked periodically from the eye of the subject, and thereby

giving rise to spontaneous EEG. Thus the entire EEG record was com-

posed of blocks of evoked EEG driven at the alpha frequency and of
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spontaneous EEG. The length of each block was about 25 seconds.

To facilitate digital computer work, each of the waveforms was

discretized by sampling; the amplitude every millisecond. Thus each

S

	

response between two successive stroboscopic stimuli would be

expected to have 100 sampled values. In practice, it was found that

the number sometimes exceeded 100 due to drifts in the stroboscopic

frequency. In order for the pattern vectors to be of uniform dimension,

only the first 100 values were retained.

In the experimental work of this thesis, only a few of the 100

features in each digitized waveform were used. The featureQ were

selected by the feature reduction procedure explained in Appendix II.l.

In order to illustrate the degree of overlap between the two classes

of EEG signals, Figure II.11 shmis a plot of samples from the two

types of EEG. The samples are two dimensional with the features

being the first two selected by the feature reduction procedure. The

line in the figure is the separating plane for the two features where

the equation of the plane is also explained in Appendix II.1. Prabhu [1 ]

found that there was about 20% error rate in classification decisions

made on single observations with the separating plane.
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Appendix 11.3 - Order Statistics

This appendix will define the notion of an order statistic

and present some of the properties of such a statistic. Some

references that can be consulted on order statistics are Hogg and

Craig [ 9 ] , Wilks [ 10],  Fraser [ 11],  and David (121.

Let Xl , X2 ,... ,Xn be n independent random variables identically

distributed with absolutely continuous distribution function F(x)

and with probability density function f(x). Rearrange X1,X29400,Xn

in ascending order so that X 4 X 4	
in

4 X . For convenience
it
i2 

relabel the set as Yl = Xi , Y2 = Xi ,..., Yn = Xi so that
1	 2	 n

Y1 4 Y 2 9 ... 4 Yn. Yi , i=1 , 2,...,n, is called the i-th order statistic

of the random sample Xl ,X2,.0.2Xn.

The joint density function of Yl,Y2,...,Yn can be shown to be

n:f (yl)f (y 2)... f (yn)

9(yl,y2,...,yn) =	 yl 4 Y2 	...	 y 
	 (Y1.3. 1 )

0	 elsewhere

From this joint density, it follows that the marginal probability

density function of yk is

4

gk(yk) _ (k-l)i(n-k): [F(yk)lk-1
[ 1-F (yk)^n-kf (yk) 9	 (I1.3.2)

and the joint density of yi and yj , i < j, is



f 
(x) dz I	 f (x) dz	 f (x) a/ax	 f (x) f (x)1* for a < x < b . 7e
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(i-1) e (^- i- 1) (n-^ ): IF(yi) 

)i-ltF(y^ 
)-F(yi)) -i-

•Cl-F(y^)In-j f(yi )f(y }	 Y1  y^

gii (yi , yi )^

0	 elsewhere

(11.3.3)

The distribution function of F(x) will now be considered.

Let X be a random variable having an absolutely continuous distribution

function F(x) and probability density function f(x). 'then the random

variable Z a F(X) has a uniform distribution on the interval (0,1).

This will be shown under the assumption that f(x) is positive and

continuous for a < x < b and zero elsewhere. The distribution

function of X can be written as

0	 x <, a

x
F (x)	 f (u) du	 a< x< b

fa

1	 x 4 b

Then for the transformation z - F(x), dz/dx - f(x) for a < x < b,

and

Thus the probability density function of Z - F(X) is
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h(z) =
1	 0 < z < 1

0	 elsewhere .
(11.3.4)

Since Z # F(X) is a random variable with a uniform distribution on

the interval (0,1), it follows that p(F(X) 4 v) - V. That is,

if p is the probability that a future sample will fall below the

random variable X. then the probability that p does not exceed v is

V.

Consider again the random sample X1,X2,...,Xn and the set of order

statistics for this random sample Y1,Y2,...,Yn. Consider further the

set of random variables F(X l},F(X2),...,F(Xn}. Since F(x) is nondecreas-

ing in x, it follows that F (Y1) 4 F (Y 2) 6 ... 4 F (Yn) , and hence Z1

F (Y1 ) , Z2'F (Y 2 ) , . . , , Zn-F (Yn) are the order statistics  of the random sample

F(X 1),F(X2),...,F(Xn). Since F(X) is uniform on the internal (0,1), the

joint density function of Z1,Z2,...,Zn is found from equation (11.3.1) to be

n:	 0 ^ z1 ^ z2 S ... ^ zn ^ 1
h(zl ,z2 ,... 9 zn )	 (1I.3.5)

0	 elsewhere

Similarly, the marginal density of Z  = F(Y k) and the joint density

of Zi = F(Yi) and Z  = F(Yj ), i < j, can be found from equations

(11.3.2) and (11.3.3)

n;	 k-1	 n--k
(k-1) ! (n-k') o zk	 (1-zk^+

h k ( z k )

0

0<zk<1

elsewhere

(I1. 3.6)

A^f
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n
i-1) *

	 ^ zi-1(
z^ -zi)^-i-1(1-Z^)n- j(j

	
(n-j) 

hij (zi , zj)
0	 elsewhere

(I1.3.7)

For the order statistics y1,y2,...,yn, the intervals (-M,yl1,

(yl 9 y 2 19, ... , (yn ,+ DO) are called sample blocks. The probabilities

of a future observation falling in each of these sample blocks are

F (yl ), F (Y2 )-F (yl ) 9 . °°s l-F (yn) respectively. F(yi )-F(yi-1) is called

a coverage of the sample block (yj-1 , yj ^. The distribution of

the random variable Z^-Z i M F(y F (Yi ) , i < J, will now be considered.

It can be shown that the random variable Z^-Z i has the same distribution

as the random variable Z j,i . Thus from equation (11.3.2), Z
J
-Zi 	r

F (YJ )-F (Yi} has the probability density function
i

9

(^-i-1} ;^(n- +i) ;v
i -i-1

(1-v) ,-J+i	 0 < v < 1

h(v)-
0	 elsewhere

(11.3.8)

It is noted that this is a Beta distribution B(j-i,n-j+i+l). The

mean and variance of F(Y^) -F(Y , i < , can be calculated to be

e

E[F(Y )-F (Yi 	 (II.3.9)

Var[ F (Y.^)-F(Yj) l 	 {-i) 2 	 °	 (11.3,10)
(n++l) (n+2).

I

.F	 Y

t	 .A,
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In particular, E[F(YJ+l) -F(Yi)] = 1/(n+l). Thus the order statistics

partition the sample axis into n+l parts, and the expectee probability

of a future observation falling in each part is 1/(n+l).

The theory of sample blocks and coverages can be extended to

more than one dimension by using ordering functions. The concept of

ordering functions will be introduced by considering a single ordering

function to partition the s-dimensional sample space. Let

(X1 X
2 .. . ,Xj), J- 1,2,.. .,n,be n independent s-dimensional iandomJIN

variables distributed as the random variable X - (X1,X2,...,Xs) with

a continuous s-variate distribution function F(x1,x2,... ,xs)o if

W s t(X1 , X2,...,Xs) is a random variable with a continuous distribution

T (Wj , then t (xl , x2" 0992, x s  ) is an ordering funeti L A. W = t(K1 X^ , ... , X S.

J=1,21...,n, constitutes a random sample from a population whose

distribution function is T(w), and the random sample can be ordered.

Let the order statistics for the random sample (W1,W2,... ,Wn) be -

	

(W1 ,Wi ,. . o,Wi ). Then the J-th sample block is B = {xlt(xi 	) < t(x)
1 2	 n	 j	 J°1

ir, t(xi )) where xi is the s-dimensional sample such that w  = t(xi ).

Figure 11.12 provides an illustration in two dimensions. The coverages

of the n+l sample blocks are Z1 = T (Wi ) , Z 2  = T (Wi ) -T (W1 )1000*
1	 2	 1

Z  - T (Wi ) --T (Wi ) , Zn+l = 1-T (Wi ) where Z  - T (W1 ) -T (Wi ) is the
n	 n-1	 n	 i	 J-1

probability that a future observation will fall in the J-th sample block.

It can be shown that for the coverages Z1,Z2,...,'n+l the sum of any

r coverages has a Beta distribution B(r,n+l-r). Thus the expected

value of a future observation falling in any r, r 4 n, of the sample blocks

is r/ (n+l) .
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k- th ordering curve

W ik a t(XI,X2)

k -th sample block Bk
E3n#1

k-th coverage

$ n	 z k -z.k-1 - T (wk ) - T (Wk-1)

m P (observation C' Bk )

k

•
•

X,

FIGURE x.12

Example of Ordering Function
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For a random sample of n random variables, it is also possible

to partition the sample space into n+1 sample blocks by using as

many as n different ordering functions. It can be shown [ 7],

(103 that the coverages of each sample block, which are the probabilities

of a future observation falling in each sample block, still follow the

Beta distribution. Thus the expected value of the-probability of a

future observations falling in any r, r i<, n, of the sample blocks is

r/ Cr:+l)

'S

x

3J

}
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CHAPTER III

A SURVEY OF DENSITY FUNCTION ESTIMATES

Section 1.6 of the introductory chapter mentioned that a

classification method will be presented that uses density estimates

in a sequential test called the sequential probability ratio test

(SPRT). The chapters that follow this one examine density function

estimates that are well suited for the SPRT and formulate an

estimated version of *he SPRT from the density estimates. Before prow

ceeding to such a development, this chapter presents a survey of

several known techniques for estimating density functions.

K

III.I Assumptions

In discussing the density estimates presented in this report,
i 	 1 
}

the following assumptions about the samples from each class are made:

i) that the samples are scalars

ii) that the samples are indepefidently, identically distributed

in each class

iii) that the samples of each class are of the continuous type.

(the footnote in Section 11.2 defines a random variable of the

continuous type.)

111.2 Motivation for Density Function Estimates
c^..^i	 m s	 w..^..ws. w+rr	 r

In order to get a clearer idea of what is involved in estimating a

density function, the definition of a density function will be reviewed.
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The probability distribution function F(x) of a random variable x is

defined as F(x) ^ p(n 4 x) and the density function f(x) is the derivative

D dF(x)of F(x), f(x) = dx	 In the pattern classiticetion procedures dis--

cussed in this report, F (x) is unknown. The distribution function F(x)

can be easily estimated from training samples by taking as the estimate

the fraction of samples less than x (remember that only scalar samples

are being treated in this chapter.) As the number ' of training samples

approaches infinity, this estimate of F(x) approaches the true F(x) with

probability one and in the mean square. Cramer [6] and Rao [13) are among

many authors who discuss this estimate.

While the estimate of F(x) is straight forward, it is the estimate

of f(x) - F'(x) that is actually needed. The definition of a derivative,

1 im F (x+h) -F (a-h)	 f (x)
h->0	

2h

can be used to motivate methods for estimating f(x). Equation (III.1)

can be written more generally in terms of probabilities as

(111. 1)

lira p (observation a A)	 f (x)
a-*O	 A

(111.2)

where A is the width of some interval that contains x. Thus f (x) could

be estimated by first approximating f(x) as in the left hand side of

equation (111.1) or (II1 . 2) and then estimating the approximation from

training samples. Most methods which have been developed for estimating

f(x) involve using equations (III.1) and (II1.2) in one of two ways:
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i) one approach is to specify the internal width A and

and let the numerator p(observation t A) be a random variable

to be estimated from the training samples

ii) another approach is to specify the numerator p(observation E 0)

and to specify a certain number of training samples to be con-

tained in the interval A so that the denominator takes the value

of that interval width A which contains the specified number of

training samples.

In i) the interval width is specified and in ii) the training samples

determine the interval width. Rosenblatt [3.41 9 Whittle [15], and Parzen

[16] have written about i) and Loftsgaarden and Quesenberry [17] about ii).

Cover [IE9 in a general discussion of nonparametric pattern recognition

methods briefly discusses the use of the Parzen density estimate in a

Bayes decision rule and mentions the estimate of Loftsgaarden and Quesenberry.

The remainder of this chapter will discuss several density estimates stressing F.

properties which are important to sequential decision methods where, of course,

a string of'observations are considered at once. Some considerations to
i

be described are storage requirements, complexity of calculations, and

continuity of the density estimates.
`S

111.3 Density- Models That Specify Bin Width

111.3.1 Fixed Bin Model

Perhaps the simplest density function estimate is the estimate

that is often referred to as a histogram and what will be called the

fixed bin model in this report . Referring to equation (111.2), this
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density model sets the denominator and estimates the numerator. The

sample axis is partitioned into a number of fixed intervals as in

Figure III.1. The density estimate for an x in any interval is the

fraction of training samples in that interval divided by the interval

width. Let

n be the number of training samples

k be the number of bans

Yi , i=1,2,...,k+1 be the bin boundaries

M  be the number of samples in the i-th bin

(or in interval (Yi'Yi+1))'

then

M
for 

y  < x < Yi+1
f (x)

0
	

for x < y1 or x > Yk+l.

	 i

	

(III.3)	
a

By its construction, estimate (III.3) is a step function. Since the intervals 	 i

are specified by the choice of the Y i 's, only the yi 's and the fraction

of samples in each bin need be stored while using the estimate. Thus,

A^

	

	 the estimate is calculated for all x at once, and the whole density estimate

is stored for future use. One question that must be answered in formulating

this estimate is that of where to place the bins along the sample axis. If

the bins are wide or are placed where there are few samples, the estimate

f(x) may be inaccurate, and poor use will have been made of the training samples.

Hughes [ 19] discusses the effect of the number of training samples and

the number of bins on the mean accuracy, of a Bayes decision rule which uses
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Example of Fixed Bin Density Estimate
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fixed bin density estimates. In Hughes' paper, the placement of the

training samples in the bins was given a uniform prior distribution

in order to consider all possible combinations in which the training

samples might occur in the bins. Abend and Harley [2n], Chandrasekaran

and Harley [21], and Hughes [22] amend the results of this paper by

using the training samples to provide posterior estimates of the

probabilities of an observation following in each bin so that the estimates

will be consistant with the uniform prior distribution. Patrick and

Hancock [23] examine the Bayes decision rule for problems where the train-

ing samples are available but their classification is unknown. In dis-

cussing the situation when no information is known about the density

functions, they show that a fixed bin model can still be used to estimate

the density functions.

III.3.2 Parzen Model (Specified Sliding Bin)

Parzen [161 estimates the density function at x by centering a

bin of specified width about x. Similar to the fixed bin model, Parzen's

density estimate specifies the denominator of equation (III.L) and

estimates the numerator. As the bin (x--h,x+h) is always centered at the

x for which the density estimate is desired, the mechanism of the model may

be viewed as a sliding window of width 2h. Figure 111.2 illustrates the

model. The estimate at any x is

A,	 fraction of training samples in (x-h,x+h)
f (x) -	 2h	 (III A)

The model is similar to the fixed bin model in that the bin width is



w

111-7

I

A	 fraction samples in (x-h, x+h)
f (X) =	

2h

X

2h

FIG. M - 2

Example of Parzen Density Estimate

iZ
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specified, and agAin there is the question of how wide to set the bin.

It may be that for some x the interval (x-h,x+h) does not contain a

great enough percentage of the training samples to provide an accurate

estimate of f(x). Given an x, it may be necessary to change h until a

satif,factory number of samples is contained in (x-h,x+h) . Parzen and

Rosenblatt have developed formulas for h as a function of the number of

samples sc that h minimizes the mean square error of the estimate, but

these expressions require a knowledge of f(x) and usually f"(x). The

utilization of this model in a decision algorithm requires that all

training samples must be stored. The estimate is then calculated for

each x. The estimate in equation (111.4) is not continuous, but the

general formula for the Parzen estimator presented in the next paragraph

can provide a continuous estimate.

Let thare be a training samples {xi}, i-1,2,,,.,n, Then Parzen's

model can be expressed in a general formula

1	 n	 xmXif (x) M
nh (n) i=l K (h(n)

where

sup	 JK(y) I < co
-M<y<m

(111.5)

IK(y'/Idy < 00

lim	 jyK(y)j - 0
7400

K(y)dy - 1

a
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K(y) - l e

27T

(111.7)

- k 0-
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are conditions necessary for equation (111.5) to asymptotically

be an unbiased estimator of f(x). The estimate (111.5) converges

to f (x) in the mean square if h (n) -+ 0 and fth (n) -} oo as n -,- co.

The convergence condition h(n) -), 0 may be interpreted in equation

(111.4) as letting the interval width shrink to zero while the condition

nh(n) -1- co requires the number of samples in the interval to approach

infinity.

if

K(y) W

1	 for I 	 12

0	 for ly l > I

(III.6)

then equation (111.5) agrees with equation (111.4). The Parzen estimate

is continuous in x for other choices of K(y). An example of K(y) which
f

results in a continuous estimate is to take

For this choice of K(y), estimate (111.5) is the sum of n Gaussian

densities when each Gaussian density is centered about a training sample.

Tian Ryzin [ 241 Zees developed a classification procedure that

makes use of the rarzen estimator in Bayes rule.

III.4 Densit Models where the Bin Width is Determined by Training Samples

111.4.1 Nearest Neighbor Density Estimate (Variable Sliding Bin)

Loftsgaarden and Quesenberry (171 have developed an estimate that

employs an interval which is centered at x and whose width is determined



l
111-10

by the training samples. Unlike the fixed bin and Parzen models, the

estimate of Lof tsgaarden and Quesenberry specifies the numerator of

equation (111.2) and estimates the denominator. In Section 111.3.2,

it was mentioned that the Parzen model could be viewed as a sliding

bin of specified width centered at x.	 Similarly the Lof tsgaarden

and Quesenberry estimate can be viewed as a sliding bin of variable

width. An integer Q(n) is chosen (n is always taken to be the number of

training samples), and the R(n)-th nearest t-K, aining sample to x, called x^(n)

is round.. The interval width is then taken to be 2lx-x 	 l and it follows

that the fraction of samples inside the interval is (1(n)-1)/n. The estimate

i$	 6

z

f(x) _	
n)n	

x x^ (n)	 (111 .8) 	 x

where 
xP.(n) 

is the 1(n)-th nearest sample to x according to the

distance measure (x-yj. Figure II1.3 provides an example. The

estimate (M. 8) converges to f(x) in probability if R(n) + co

and k (n)/n  $ 0 as n -> co . The condition k(n)/n  -} 0 lets the width w 1 x-x 1 (n) I

shrink to zero while the condition 1(n) -> co allows the number of

training samples contained in the interval to approach infinity.

Matrics other than Ix-yI may be used in the estimate. In general,

if the metric d(x,y) is employed, the estimate is

f (x)	 Q 
(nom 

^'	 2d (x,xY.
(n) )
	 (1701.4)

where 
x1(n) 

is the 1 (n)-th closest training sample to x according

to the metric d(x,y).
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Example of Nearest Neighbor Density Eatf ate
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The estimate of Lof tsgaarden and Quesenberry is related to

the nearest neighbor methods of pattern recognition (25, 2E]. In

the nearest neighbor (NN) methods, an observation is classified

into that class which is most heavily represented among some

specified number of nearest neighbors of the observation. Since the

estimate of Loftsgaarden and Quesenberry involves finding the

1(n)-th nearest neighbor to x, it will be called the nearest neighbor

(NN) density estimate in this thesis.

The NN density estimate is continuous in x. All training

samples must be stored in order to use the estimate, and then for

any particular sample value x, the estimate is calculated. In the NN

estimate, the bin centered at any x always contains a specified number

of training samples; whereas in the Parzen estimate, in which the bin

width is specified before hand, the interval may contain so few

samples that the estimate can be quite inaccurate. This problem of

bin placement is discussed further in Sections III. 5 and IV.3.2.

111.5 Accuracl and Storage of Density Estimates

The purpose of studying density function estimates in this report

is to examine their use in sequential classificacion algorithms. In

practical decision problems, the amount of storage available for storing

the density estimates during computation is limited. While limiting

the storage of the density estimate is necessary, the accuracy of the

estimate is thereby decreased.

In considering the accuracy of estimates of continuous density

functions, the accuracy may be divided into two parts, one of a



F(x+h) - F (x-h)
2h

(III.10)
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deterministic nature and the other of a random mature. Density

estimates make a deterministic approximation of f(x) in the neigh-

borhood of x and then estimate the value of the approximation from

the training samples. Thus, the training samples are not used to

estimate f(x) directly but rather to estimate some deterministic

approximation to f(x), which is a function of F(x), such as

The total accuracy of the estimated density depends on how accurate

an estimate of the approximation can be obtained from the training

samples (the random part) and on the accuracy of the approximation

(the deterministic part.)

For example in the Parzen estimate of equation (III A), the density

function is approximated by [F(x+h) - F(x-h)]/2h. The interval width

2h is specified, and then F(x+h) - F(x-h) is estimated from the training

samples. No matter how accurately F(x+h) - F(x-h) is estimated, the

accuracy of the Parzen estimate will be low if [F(x+h) - F(x-h)]/2h is

a poor approximation of f(x). Likewise: if F(x+h) - F(x-h) is poorly

"I	 estimated, the density estimator will be inaccurate even though

[F(x+h) - F(x°h)1/2h may accurately approximate f(k). Both the deter-

ministic and random parts of a density estimate rust be good for the

total estimate to be accurate. The conditions for convergence of equation

(111.5) express this phenomenon. The condition h(n) -} 0 requires the

the interval width to shrink to zero and thus the deterministic

part to converge; n -0- w cau6es the estimate of F(x + h) -

F(x -- h) and hence the random part to converge. Both the
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random and deterministic parts must converge simultaneously. The

condition nh(n)	 means that as the interval width shrinks to

zero the number of samples inside the interval approaches infinity.

In general, the deterministic part of the accuracy depends on the bin

size and the random part on the number of training samples including

the number of samples inside the interval. The choice of the biro

size is a trade off between making it small to provide determiniitic

accuracy or large to give random accuracy by containing a large

fraction of training samples. Rosenblatt [141 shows that density

estimates must be biased for a finite number of samples. The bias

arises from the deterministic approximation of f(x). The estimate of

the approximation can be unbiased, but the error in the approximation

still  remains .

Since the intervals of the Parzen and NN estimates are centered

at x, they are more accurate in the deterministic sense than the

fixed bier model. But the Parzen and NN methods require storage of

all training samples for good random accuracy. The fixed bin model

sacrifices some deterministic accuracy but retains good random accuracy

in limited storage.

This chapter has discussed some properties of different density

estimates, but a more detailed discussion will be presented in the

next chapter in connection with a new proposed estimate. The various

properties of the density estimates discussed so Car seem to be determined

by two factors, 1.) whether the bin width is specified or is set by the

training samples and 2.) whether the density function is estimated for

all x at once and the total estimate stored, or all the training samples
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are stored and the density is estimated separately for each x.

Table III.1 lists the density estimates in a matrix form and shows

how the various estimates are related to these two factors. Also

listed are properties of the density estimates as determined by the

two factors.

There is one blank position in the two by two matrix in Table III.1.

and the neat chapter will propose a density estimate that fits into

the blank slot. The density estimate will combine_some properties of

the NN and fixed bin estimate , as the blank position in the matrix

indicates it should. The model will be a step function so the small

storage advantage of the fixed bin model will be retained. But the bin

widths and positions will be determined by the training samples so

that the bin placement will result in an accuracy greater than the

fixed bin model.

`I

I1

i
a



specified bin
3 	 width-*0 at such

a rate that #
samples in b in4w

# samples spec-
ified in bins

3 	 at such a rate 5that bin width-+O
r-i
i

rn

Pro erties Influenced by Factor 1

Factor 2
	 In f (x) =p (xEA) /A

Total
Point
Estimatel

Single
Point

2Estimate

NN
17,183

denominator
specified,
numerator
estimated

numerator
specified,
denominator
estimated

3

Difficulty
of bin size
choice4
more less

Convergence
conditions as
# training
samples-m

Bin Width
Set by

Training
Samples

Factor 1

Bin
Width

Specif ied

_Properties Influenced
by Factor 2

Is bin centered at x? no
yes

Storage requirement small
large

Computational complexity
for any x	 less

more

1. In Total Point Estimate, the density function is
estimated for all x at once, and the total estimate
is stored.
2. In Single Point Estimate, all training samples are
stored and the density is estimated separately for each x.
3. These numbers indicate references in the bibliography.

Fixed
Bin Parzen

19,20 16918
21,22,23 24

.

3

3

4. When the bin width is specified, there is a problem of
how to choose it initially so as to contain a number of
training samples that would give a reasonable estimate.
In letting the training samples set the bin width, a reason-
able estimate is more readily obtained.

Accuracy in deterministic
sense	 less	 ,/	 5. The number of samples specified in the bin- m but a rate

more	 ,/	 sufficiently slower than the total number of training
samples-)-m in order that the bin width that contains the
specified number of samples-}0.

TABLE III.1 Properties of Fixed Bin, Parzen, and NN Density Estimates
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CHAPTER IV

RANDOM BIN MODEL

Cha$L-'r III discussed three density estimates: the fixed bin

model, the Parzen model, and the nearest neighbor model. Both

the fixed bin and Parzen models have a computational disadvantage

in that the bin width is specified before the density is estimated

from the training samples. It is not known where to position the

intervals in relation to the distribution of the training samples,

and it is possible that the bin width could be set so wide as to

contain half or even all of the training samples. If an interval

contains too large a percentage of samples, the bin width can be

changed and the density estimate repeated. But iterating on the

interval width complicates the estimation of the density. The NN

estimate overcomes the problem of setting the bin size by determining

the interval width from the training samples. The number of training

samples R to be contained in a bin is specified, and the bin size

is determined by the width necessary to contain this number of samples.

Different values of 9 result in different estimate accuracies, but

whatever percentage of samples for a bin is specified, the bin width

will be reasonable since it is determined by the dishribution of the

training samples. The density estimate presented in this chapter

combines the property of the NN estimate of placing the bins by the

training samples with the low storage advantage of the fixed bin model.

Since the new density estimate has a step function fore similar to the

fixed bin model and at the same time determines the bin widths from
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the training samples, the estimate is called the random bin density

estimate.

Ml Presentation of Random Bin Estimate

The random bin model attempts to place bins so that the pro-

bability of an observation falling in each bin has a specified value.

Usually the bins are positioned so it is equally likely an observation

will fall in any bin is illustrated in Figure Ml. Let k+l be the

number of bi=as. The bin widths are determined so the probability of

an observation falling in any bin is k+l . Then

(x)	
1	 estimated width of i-th	 1	 for xEi-th bin

k+l	 bin such that p(xti-th bin) r ^1
(IV.I)

The bin boundaries are calculated from quantiles and quantile

estimates. The newt few sections discuss quantiles, their estimates,

and a density estimate based on quantiles. The assumptions on the

data listed in Section III.l still hold in the following discussion.

The assumptions were that the samples are scalars, identically and

independently distributed in each class with absolutely continuous

distribution functions. Conditions for the density estimates dis-

cussed in this thesis to converge to the true density f(x) require

that f(x) be continuous at x. By the assumption of absolute continuity

of F(x), the number of discontinuous points of f(x) is finite in any

finite interval. Since in this report the purpose of obtaining

density estimates is to classify observations, a density is estimated

17
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only at values of a given observation. The probability of an

observation occuring at a discontinuity is zero. Thus, the assumption

of absolute continuity of F(x) is not restrictive for classification

purposes. The convergence conditions of the random bin density

estimate that will be presented in Theorem IV.2 also assume f'(x)

is continuous in a neighborhood of x and f(x) # 0 at x. Again,

as long as the number of points at which f(x) is not continuously

differentiable or f(x) equal to zero is finite in any finite interval,

the conditions are not restrictive.

IV-1-1 _ Definition of Quantile

The p-th order quantile, labeled E p , of a distribution function

F(x) is any value of x such that F(x $Cp) p. See Figure IV.2.

In this report, g  is assumed to be unique for any p. Since x is

a random variable of the continuous type and hence F(x) is absolutely

continuous, the existence of ^p for any p is guaranteed. The further

assumption of the uniqueness of ^ means that F(x) is strictly i.ncreas-

ing in x.

IV.1.2 Set of quartiles

For any integer k, a set of k quintiles (E 1 ,	2 , ...,	 k )

k+l k+l	 k+l

can be defined such that for any two consecutive quintiles ^^ and
k+l	 k+l

F ()	 F ()	 k+l	 (IV.2)
k+l	 k+1

Figure IV-3 provides an illustration. Thus the set of k quartiles
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k+l	 k+1
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k+1 k+l
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partition the sample axis so that the probability of an observation

falling in any partition is k+1

IV41,3 Definipg a Densit- from Quantiles

Let the X be a random variable with distribution function

F(x) and density f(x), and let C 1	 2 9 °	 , k be a set

k+l	 k+l	 k+l
of k quantilese An approximation of f (x) is

0
	

x < C 1

k+l

L	 0	 x > C k

k+l	 (IV. 3)

If X is known to be distributed over an interval (a,b) then fapprox(x)

can be written as

0	 x a

M 1 )/(C  1 °-a)

k+1	 k+l	 aCx6 1
k+l

fapprox (x) ^	
^k+l ®^ k+l 	 4 x C.

k+l k11	
k+l	 k+l

1-F (& k ) l /(b-C k )	 C	 9 x 9 b
k+l	 k+l	 k

k+l
r^

0
	

x > b

By equation (IVe2 , the numceratow of equation (IVo3) are all equal to k
l
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If k is allowed to approach infinity and for any x one chooses from

the set of k quartiles (C 1 , r 2 , ... , E k ) the pair of quantiles
k+l k+2	 k+l

Just below and just above x. the approximation converges to f(x). This

is shown, below:

Theorem 1: Let X be a random variable with art absolutely continuous

function F (x) and with probability density function f(x).  Let

( 1 ,	 2	 k ) be a set of k quartiles from F(x). Define
	k+l k+l	 k+l

0
	

X < C 1

k+l

fapp rox x)
1/ (k+l)

,1 —
+1 _ 1,,

k+l	 k+1 k+1	 k+l

0	 x>	 k
k+l

(IVA)

Then at all x for which f(x) is continuous

lim f	 (x) W f(X)k^ approx (IV. 5)

First convergence of a more general form of equation (IVA)

will be proved.

Lemma l: Let F(x) be an absolutely continuous function. For a

constant x, let ak be a ,sequence_ of real numbers. such that ak . x

and ak x as k	 and b  be a sequence of real numbers such that
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b  :^, x and b  -I- x as k -^ w. Then at all x for which F' (x) is

continuous

F (bk) - F (ak)
ki^	 bk - ak

r (X ) s	 (IV. 6)

Proof: Since F(x) is absolutely continuous,

AF 
^ 

F(bk)-F(ak)	 1

rak
k 
^^'k-akbk ak(IV.7)

Subtracting F'(x) from both sides of equation (IV.7),

b
AFk F' (x) - b 

1	
k (+' (u)-F ' (x))dj .	 (IV. 8)

k ak ak

By the assumption of continuity of F(x) near x, for all e > 0 there

exists a $t > 0 such that IF'(y)-F'(t ) f < t if ly-t ) < 6E , Given

an e, choose kE such that bk-ak < dE if k ^i k ^. Then it is observed that

IV-xl<SF- if k :^ k  and ak 4 u 9 b  (remember ak z x 4 bk). The condition

IV-xl
<dE and continuity of F' (x) imply

	

JF' (u) - F' (x) l < e	 (IV.9)

Substituting equation (IV.9) in equation (IV.8),

JAFk - F 1
(x)1 <

	

	 k rdU a E	 (%V.10)
k ^ ak

and so 
IAFk 

F'(x)i < t if k :;k k£ . Thus for any E > 0, there exists

a k  such that 16F	 F (x) l	 < e if k :^ SCE , and	 Lemma 1 is proven.
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Proof of Theorem 1: Lemma 1 implies Theorem 1 if 
-.L- 

in equation

k+1

(IV-4) can be identified with a k and 
Cj±1- 

with bk. By construction
k+1

of equation (IV.4), 	 4 x 4. It remains to show that

	

k.+l	 k+l
CLl— $ x and 1j±1- -^ x as k 	 It has been assumed that for any
k+l	 k+l

P the p-th order quantile C  is unique, and hence F(x) is strictly

increasing in x. So 
CLj— 

4 x 4 
CJ±.1- 

implies

	

k+l	 k+l

F 
(E^-.L) 

G F (x) 4 F {^)	 (TV. 11)

k+l	 k+1

Now F(gj+,) -F(g 	 k+1	 For any e > 0, there exists a k  such

k+l	 k+1

that - < e if k k^. Thus

lim(F( +y ) - F	 0 s	 (IV s12)
h-^

Equations (IV.11) and (IV.12) imply

lim F (	 )	 F (x)	 (IV. 13)
k	

k+1

and

1im 
F (1j±1

-) = F (x)	 (IV. 14)
k-Oco	 1

Since F(x) is strictly increasing in x, equations (IV.13) and MAO
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imply

lim	 s x	 (IV. 15)
k-m k

ll

and

1im	 _ x	 (IV. 16 )
k	 k+l

The sequence	 has the properties of ak and	 those of bk,

►^+1	 k+l

and so Lemma 1 implies Theorem 1.

IV.1.4 Quantile Estimates

Equation (IV A) presents a density approatimigion containing
5

quantiles. If F(x) is unknown, the quantile can be estimated from 	 }
{

training samples. A density estimate can be constructed by replacing
a

the quartiles in equation (IVA) with quantile estimates.
k

The p®th order quantile of a distribution function F(x) can be

estimated from training samples with order statistic theory. Let
i
R

n independent observations of a random variable X be arranged in

ascending order.

xi < xi < ... < x1 0	 (IV.17)
1	 2	 n

Relabeled the samples for convenience

yl xi 	y2 xi , ...	 y  • xi	(IV. 18)
1	 2	 n

(y1 9y2 90669 
r) is, as is mentioned in Section 11.3, a set of order

statistics. An estimate of the p-th order quantile t  is
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n

^P	 y[nP,+l
	 (IV. 19)

where [w] is the largest integer less than or equal to we If np is

an integer, choose any value in the closed interval between y np and

yn
P  +1 

since the distance between the two neighboring order statistics

ynp and ynp+l trends to zero 
as n approaches infinity. A motivation

n	 ^.
for p is that the fraction of samples less than C  is near p and

from order statistic theory (see Appendix 11.3) E[F(& p ) _ [nn+1l

which is approximately p. Rao [13] shows that the estimate
P

approaches ^p as n -1, co with probability one. The distribution of C 

is shown by David [121 to be asymptotically Gaussian with mean ^ p and

	

variance °-P-( 2 where for np equal an integer 	 is taken to be
n[f (gyp)

y np to simplify the indeterminate case.

The set of quantiles (^ 1 ,	 2 ,...,E k ) that appear in the

k+l k+i	 k+1

density approximation of equation (IV.4) can be estimated from equation

(IV. 19)

y	 for j-1,2,...,k	 (IV.20)
n

k^+1	 [k+1^+^

IV.1.5 Estimating the Density Function f(x)

If a set of k quantile estimates { 1 	 2 ' " ' 	 k )
	k+l k+l	 k+1

determined by equation (IV.20) serve as the bin boundaries in the

random bin estimate, then each bin contains approximately the s=e

number of training samples. The random bin density estimate is
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A
f (x)

0 x
A

< C 1

k+l

1
k+l 	 +1

A
°^)

A
< x <

k+l k+l k+l k+l

0 x >
A

k
k+l

(IV. 21)

The following theorem shows that the random bin density estimate

converges in probability to the true density if k -} 	 and k/n -> 0
A

as n 4, 00 . For convergence of f(x), the bin width must approach zero

yet contain an infinite number of training samples. The condition

k -> <, lets the bin width tend to zero while k/n -► 0 allows the

number of samples in each bin to approach infinity. The need for

k -0- 00 and k/n -1- 0 as n -► cc can also be seen by inspecting

(k+l) (Cj+i -) . The conditions k	 and n	 are necessary
k+l	 k+l

for	 ; 0. Since	 ^-^ is multiplied by k+l and

	

k+l k+l	 k+l	 k+1

k+l -► ^, an additional condition of k/n -¢ Im is needed in order that

both (k+l) and (	 -	 ) converge at rates appropriate for

k+l k+l

A	 A	 to converge to f (x).

k+l	 k+l
n

In the proof of convergence of f(x) to f(x) in the following

theorem, a lemma is first developed that shows that i(x) follows



l d-

I

IV-13

asymptotically for large n a Gaussian distribution. The lemma shows

that since, J $1,2, .... k, are asymptotically jointly Gaussian

k+l

the asymptotic distribution of 1/2 (x) = (k+l) ( C'S Ems} , which is

k+l k+l

a linear combination of two Gaussian random variables, is Gaussian.

^
The asymptotic distribution of f(x) is then proved to be Gaussian.

The proof of the theorem concludes by showing the convergence of

^
f (x) to f (x) .

Theorem 2: Let X1,X2,...,Xn be n independent random variables

identically distributed as a random variable X with an absolutely

continuous distribution function F(x) and with probability density

function f(x). Let (Y1,Y2,--.,Yn) be the set of n order statistics
^

for (X1 , X29 ...vXi), and let E i	 = Y .j A_  
	
, J=192,.., ,k(n),

k(n)+l	 ^k (n)+lJ
4-

1 

where k (n) is a sequence of positive integers such that k(n)

and k(n) /n -^ ® as n -^ ®. Define

0	 x <
	 1

k(n)+l
1	 ^

f (x)	 k (n)+1 /Citi--- -	 _}	 ^ C' x 1C ¢^i

n	 k(n)+1 k(n)+t	 k (n)+l	 k(n)+1

G	 x ,	 k n
k(n)+1

(IV. 22)

r

,i

R

3`
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Then fn(x) is a consistent estimator of f(x) at all x in the neighbor-

hood of which f(x) and P W are continuous and f(x) 0 0.

Before the theorem is proven, the following lemma is developed.

Lemma 2: The density estimate fn (x) defined in Theorem 2 follows

asymptotically a Gaussian distribution.

Proo f of Lemma 2: First, 1/fn(x) will be shown to be asymptotically

Gaussian. If s quantiles EP9, Cp',-W.., CP.. are estimated by

equation (IV-19) and f(x) is differentiable in the neighborhood of

A	 A	 A
then the s quantile estimates	 ,	 ,...,	 follow asymptotically

Pi	 pl P2	 Ps
an s-variate Gaussian distribution [12] with means

E
G pi	

(IV. 24)
pi

variances
Pi(1-Pi)

vaarG(pi} M n f
	 2	 (IV. 25)

[ (cp ) ]
i

and covariances

Pi
 (1-p )

cove { gyp p ) s of (	 ) f (E ) 
s i < j	 (IV. 26)

i 	 pi	 p^

Let X1O X29 ... ,Xn be n indep4ndent random variables identically

distributed as a random variable X with distribution function

F(x). 0(X1OX2 9
 ... 

,Xn) is a consistent estimator of 0 if

Q(Xl,X2,...,Xn) converges to 0 as n	 Convergence in this

report is shown in probability.
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A subscript G has been used to indicate that these are the means

and variances of the asymptotic Gaussian distribution since the

means and variances of the asymptotic distribution of a random,

variable are not necessarily equal to the limits of the actual,

weans and variances of the variable. Letting s=2, P 1 = k(n)+l
and P2 - k

(n)+l
  , then (k (n'1+l) ( 

+^ 1 °E^	 } is a linear
k (n)+l k (n)+1

combination of two asymptotically Gaussian random variables and so

is itself asymptotically Gaussian with mean

^ ^

k(n)+1 k(n)+l	 k(n)+l k(n)+l

and variance

varG [(k(n)+l)(	 ,^+1 °	 ^ )]	
I

_ 
k (n)+l k(n)+l'

(k (n)+1) 2	 ^
n	 [varG (C +1 ) °2 cove,( +1 	^)

k(n)+l	 k (n)+1 k (n)+l

^
+ varGC^^) a

k(n)+l

. J+g ^1	 j--
(k n)+ -1 

2	
k(n)+1 (1_ k(n)+l) ° 2 k(n)+1 

(1
-k n)+l )

n	 [f( )l2	 f(4	 ) f (E +1 )
+-k(n)+1l 	 k(n)+1	 k(n)+I

+ k(̂  i (	 )	
iV.2

[f(	 )]2
k(n)+1



h2
F(x+h2) F(x)+h2F(x) + T2 V O)

f[
I

t
r

x<^<	 J+l
k (n)+l

(IV. 30)

T

1	 If(Y)1 C i 
	 <Ycx

k (n)+1

and

^e

f (x+h) . f (x)	 h2	 2
2	 WWIl

x<u<
	 +1

k(n)+l

i
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These two equations are actually the asymptotic means and variances

of Of (x). Before finding the asymptotic mean and variance of

fn (x) , it will be shown that var(, (,, 1 ) tends to 0 as n -► ^.
f 

This will be shown by expanding the terms in equation (IV.28).

By definition of quantiles, k(n)+l - F(&	 and
k(n)+l

_ +lk(n)+l F(E ,+1 )	 For convenience, let hl x - E	 and

k (n)+1	 k(n)+l

h 	 J+1 -x. F(x-hl), F(x+h 2), f(x-h1), and f(x+h 2) can be expanded to
k (n)+1

2

F(x h) F(x)-h f (x) + 1 v(e)	 -- -- < 0 < x1	 1	 2	 k (n)+1
(IV. 29)

(IV. 31)

(IV. 32)

After substituting the above four equations into the expression for
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varG (7 1 ) in equation (IV.28) and performing algebraic manipulations,
f(X)

the varG (; l ) becomes
f(X)

var („ 
1 _) = k (n) -^1 2 { {hl---	 - + 0 (h2 )+ 0 (h2)+ 0 (h h )

G f W n 	 f W	 l	 2	 1 2

(IV s 33)

Now an expression for (k(n)+!) will be found. Upon subtracting

equation (IV.29) from equation (IV.30),

F (x+h 2 )--F (x-hl	f (x) (hl+h2) + 0 (h2} + 0 (h2
	

(IV. 34)

Since F (x+h2 )-F(xdhI) - 1/(k(n)+I), it is found after algebraic

manipulations that

k(n)+1	 1	 1	 } .	 (IV .35)hl+h 2 g (x)+[Q (h1) (h 2) 1/ (h &2)

Substituting this expression into the varG [1/fn(x)] in equation (IV.33),

k n +1varG [ 1/fn (x) ] ,^	 n ^	 2 1	 2	 }

f (x)+[0 (h) (h)]/(h1	 2	 i+h2)

.^	 0(h2)+0(h2)+O(h1h2)
( f(X) +	 hi+h2

(IV. 36)

Equations (IV.15) and (IV.16) in the proof of Lemma IV. I state that

-	 + x and I 3+1 -0- x as kW W, and so hl 0 and h2 -^- 0

k (n)+1l 	k (n)+1
as k(n)	 Since k(n)/n -* 0 as m
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1im varG [l/fn (x)] - 0
nolm

(IV .37)
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Now that the asymptotic distribution of 1/fn (x) has been
n

found and it has been shown that ve.rG [l/ fn. W I -)- 0 as n -i- cc , the

asymptotic distribution of fn (x) will be obtained by the following:

Lemma (David [12]): Let X19, X29... 9 
X 

be n independent random variables

identically distributed as a random variable X. Then tj (X1,X2,,..,%n),

j nl, 2, ... ,M, are m random variables that are functions of (X 1 ,3 29 . • .
'%n) e

If the random variables tj(%1,X2,...,%n), j-1 9 2,...,m, have asymptotically an

mi variate Gaussian distribu°Ion with means uj , variances a3 which tend to 0

as n -► ^, and covariances Q ij , and if gj !t3 } are single-valued

functions with nonvanishing continuous derivatives g'(tj ) in the

neighborhoods of t j - Pi .  then g j (t
j
 ) themselves have an m-variate

Gaussian distribution with means g j (u j ) and covariance eijg (^i)g3 (^j } ,
With m - 1, t	 (k(n)+l) ( i+l -	 ^..^)' and U f-	 t

k(n)+1 k(n)+l

(k(n)+1) (E i+l -^ } and since f (x) ¢ 0, the transformation
k(n)+1	 k(n)+1

g(t)I satisfies the conditions of the lemma, Since g'(t) - * , 	 1
t

A W is asymptotically Gaussian with mean

EGfn(x) - k(n)+1 / ( .i+l	 j	 (IV .38)
k(n)+1 k(n)+1

and variance
	 e.

varG [fn (x) ) - ^( J+	 -
k(n)+1

)14 var [ 1/fn W l . (IV-39)

k(n)+1
[k(nj+l



-1

I

IV-19

Theorem 1 states that

lien	 1	 (IV. 40)

k(n)+1	 k(n)+1

and so

lim EGfn (x) - f (x)	 .	 (IV.41)
n-M

A
Further, since varG [ 1/f (x)	 0 as n-j- 00,

lim varG [fn(x) ] - 0	 (IV.42)
n-w

Lemma 2 has been proven.

^
Proof of Theorem 2: From Lemma 2, fn (x) follows asymptotically the

^
Gaussian distribution 0 n(u) with mean EG (fnW ) and variance

A
varG [ f (x) ] ,

u-%(Tn (x) )

l/2

	

(varG [fn(x)]}	 1	 -1/2 v2^n(u) ^	 e	 dv .	 (IV.43)

From Lemma 2, EG(fn(x)) -► f (x) and varG Vn(x) ] -- 0 as n	 so

u < f (x)
EG (fn(x) )

lim	 1/2 ^	 0	 u M f(x)	 (IV.44)

u > f(x)

Thus
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Def ine

0	 u < f (x)

	

lim 0n(u)	 2	
u = f(x)	 (IV. 45)

n-x*

1	 u > f (x)

0	 u < f (x)

	

F'(u)	 (IV. 46)
1	 u 3 f (x)

The "limit  of 0n (u) as n -> w equals F(u) at all points for which

F(u) is continuous. Since 4^ n (u) is degenerate at u - f(x) in
n

the limit, fn(x) converges in probability to f(x).

IV-2 Restatement of Algorithm for Random Bin

Density Estimate

This section presents a concise summary of the procedure for

finding the random bin density estimate from n training samples.

1.) Calculations performed with the training samples:

a) order the n training samples

yl < y2 < ... < yn	(IV.47)

b) estimate k bin boundaries

a	 y 	 ^y
k+l	 (k+l1+1 k+l lk+l1+1

V	 ^...^	 ' y kn	 )	
(IV-48)^ n	 k

k+1	 [ k+1	 k+l	 t k+l +^'
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By storing the k bin boundaries, the entire density estimate is

stored so that f(x) can be estimated at a later time on line.

2.) Calculations performed to find f(x) from the bin boundariets in

equation (IV.48)

a.) find	 and	 such that

k+1	 k+l

^	
1j±1-

k+l	 k+1

b.) then

f (x)

0 x < a

k+l^ ( 1	 te a) a4x^ l
k+l k+l

k+1 ( 1	 )^ S x	
I,+-,

k+l k+l k+l k+l

1
(b  k) 4 x 4 b

k+1
k

k+l k.+1

0	 x > b

(IV. 49)
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IV.3 Comparison of Random Bin Density Estimate with Other Estimates

Section III.l stated that density estimates generally are of

the form P(x E 
interval	

, and either the denominator is specified
width of A

and the numerator estimated or the numerator is specifies and the

denominator estimated. The random bin model is of the latter type

and so is similar to the NN estimate. Both estimate the interval

width from the training samples. The random bin model is similar

to the fixed bin model in that it is a step-function. In the random

bin and fixed bin models, the density function is estimated for all

x at once, and the total estimate is stored. Table IV A lists the

properties of the random bin model and the three models discussed in

Chapter III. Table IV.I is similar to Table III.1 with the random

bin estimate added. The remainder of this chapter discusses the

estimates in more detail.

IV.3.1 Storage and Computation Requirements of Density Estimates

The storage and computation requirements of a density estimate

can be divided into two parts. One part, to be called on-line, is

for the storage of the data needed at the time of a classification

decision and the amount of calculations required to make the decision.

The other part, called off-line, is for any preprocessing that may be

necessary before the data is stored for later use in a classification

algorithm.

As an example of how off-line and on-line storage and pr®cessing

might be utilized in practice, consider the EEO signals discussed in

Section 1.2. A possible decision problem is to determine from EEG

3



S

Properties Influenced by Factor 1

In f (x) =p (xcA) /AFactor 2

Total	 Single
Point 

1 
Point 2

Estimate Estimate

denominator
specified,
numerator
estimated

numerator
specified,
denominator
estimated

Dif f iculty
of bin size
choice4
more Less

Convergence
conditions as
# training
samples-

Bin Width specified bin
Set by

Training
Random

Bin
NN

17 1, 18
V/	

v,
	

width-+O at such
a rate that #

Samples samples in bin-
Factor l ^-

Fixed # samples spec-
Bin

Width
Specified

Bin
19,20
211,22923

Parzen
16,189

24

ified in bin-
3 	 3 	 at such a rate	

5that bin width-}0 c,

Properties Influenced 1.	 In Total Point Estimate, the density function is
by Factor 2

I

estimated for all x at once, and the total estimate
is stored.

Is bin centered at x? no 3

'/
2.	 In Single Point Estimate, all training samples are

yes
stored and the density is estimated separately for each x.

Storage requirement small 3 3.	 These numbers indicate references in the bibliography.
large 3 4.	 When the bin width 1s specified, there is a problem of

Computational complexity how to choose it initially so as to contain a number of

for any x	 less 3
training samples that would give a reasonable estimate.

more In letting the training samples set the bin width, a reason-
able estimate is more readily obtained.

Accuracy iw deterministic 5.	 The number of samples specified in the bin-w but a rate
sense	 less 3 sufficiently slower than the total number of training

more 3 samples-)-w in order that the bin width that contains the
specified number of samples-*0.

Tait region problem	 yes 3 	 8
no 3

TABLE IM Properties of Fixed Bin, Parzen, NN, and Random Bin Density Estimates
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measurements the state of consciousness of a patient undergoing

surgery. The information on the patient's state of consciousness

would determine the amount of anesthetic to give the patient.

Calculations on the EEG measurements to determine the density functions

necessary for such a decision could be performed off-line before the

surgery when large computer facilities would be available. During

the operation, the testing on the patient's state of consciousness

could be done on-line with small information storage facilities being

required.

When the density estimate is a step-function calculated for all

x at once as in the random bin and fixed bin models, off-line pro-

ceasing is necessary. But the on-line storage requirement of these

estimates is small as only the bin boundaries and step-function

values need be stored, and the on-line calculation of the density

estimate for any x is simple because only the bin in which x lies

needs be found. ne Parzen and NN models have no off-line processing.

But the on-line storage requirement is large since all training

samples are stored, and more on-line calculations are required as the

bin is centered at x every time an estimation is wade.

As mentioned in the previous paragraph, the random and fixed bin

estimates require off-line storage. In the fixed bin model, the

fraction of training samples in each b is is calculated, and each
.	 r

training sample may be discarded onee the bin in which it lies has been

found. In the random bin model, the training samples are ordered
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and all samples must be stored during the placement of the bin

boundaries. Thus the off-line processing requirement of the random

bin model is larger than that of the fixed bin model. The fixed

bin estimate is also easier to update with additional samples.

IV.3.2 Sin Placement

In the random bin and NN models, the interval positions are

determined by the training samples, while in the fixed bin and

Parzen models, the interval positions are specified before train-

ing samples are known. When the intervals are specified beforehand,

a bin may contain a very high proportion of the samples; it may be

necessary to change the interval and estimate the density again to

increase the accuracy.

The centering of the bin at x in the NN and Parzen estimates

provides more deterministic accuracy. The random and fixed bin

models da not center their bins at x, but the decreased deterministic

accuracy is traded for smaller on-line storage and processing require-

ments.

Properties of the random and fixed bin models can be combined

into one estimate. The bin bo"ndaries could be placed by some of th.-,

training samples, then the bins could-be taken as specified and the

fixed bin method applied to the other samples. Such a mixed estimate

would combine the two modes of density estimation, which are either

specifying the denominator of 2.x 
a interval A) and estimating the

width of

numerator or specifying the numerator and estimating the denominator.

The mixed density estimate would operate in each mode one at a time.
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Sebestyen and Edie [27] have formulated a density estimate

that is one possible way of combining the two modes of density

estimation mentioned in the previous paragraph. Sebestyen and Edie

determine both the number of bins and bin sizes from the training

samples, The estimate is a step--function. First, an initial set

of bins is chosen. Then by applying the training samples, some

bins are enlarged and some reduced, and some new bins are created

and some old ones combined. The £tai: parts of the density function

are approximated by a few, large bins, and the rapidly varying

parts by more, smaller bins. The motivation of the estimate is

to minimize the mean square error.

n
(f (x)-f (x)) 2 d (IV.50 )

and require little storage.

Figures I1I.4 a,b, and c show an illustrative comparison of

the estimates of Sebestyen and Edie, fixed bin, and random bin.
4

The Sebestyen and Edie method appears to come the closest to minimizing

the mean square error.	 But since the density function estimate is to

be used to classify observations, it seems more appropriate that the

estimate should have greater accuracy where observations are more

likely to occur. In other words, the estimate should be more accurate

nearer the peaks of the density. Rather than trying to minimize the

mean square error, a more appropriate criterion is to minimize
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a

FIG. IZ. 4a

A
4;1	 fIv1

FIG. M. 4b

A

FIG. M.

Comparison of Density Estimates of Sebestyen
and Edie, Fixed Bin, and Random Bin
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(f (x)-f (x) ) f (x)dx . 	 (IV. 51)
^Op

Equation (IV.51) weighs more heavily the higher values of the

density function where more observations are likely to occur.

Since the random bin model places the bins so each bin contains

apzyroximately the same number of training samples, more bins are

concentrated where more samples occur and the model comes closer

to satisfying equation (IV.51). It is of course possible to vary

the random bin model as presented in this thesis and to specify

different numbers of training samples for different bins.

IV.3.3 Tail Region Problem

A problem arises with step- -function estimates when the random

variable X is distributed over the interval 	 If f(R) is

estimated for x less than the lowest bin boundary or greater than

the highest b.t boundary, f(x) will be zero. For example in the

random bin model in equation (IV.21), f(x) - 0 for x < 
1 

or

X > k	 Figure IV.5 illustrates this occurance. If anlestimate

k+1
of f(x) is all that is desired in the tail regions, then f(x) - 0

r
is a reasonable estimate. A problem occurs when f(x) becomes part of an

estimated likelihood ratio f (x1C2)/f (xlcI) as is the case in the

estimated version of the Wald sequential probability ratio test

to be presented in the next chapter. When a string of t observations

has been taken and x  results in either f(x t jC1) - 0 or ?" N IC2) W 0,

the likelihood ratio of the t observations will be zero or infinity, and
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Tail Regions of Random Biro Density Estimate
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will cause a decision to be made immediately regardless of the previous

observations. This phenomenon leads to more error decisions in the

sequential test to be presented than should be allowed by the specific

error probabilities. The reason is that a dt_:,^sion is made on the

basis of only the one observation. The likelihood ratio ignores

previous observations, and the test does not evaluate enough obser-

vations for the error rates to be small. This tail region problem, as

it will be called in this thesis, is discussed further in Chapter V

when the estimated version of the likelihood ratio is presented.

The Parzen and NN models avoid the tail region problem since

their density estimates are continuous in x.

IV-3.4 Conclusion to Comparison of Density Estimates

Table IV.1 is again recommended for a comparison of the various

estimates. The next chapter explores the use of the random bin

estimate in an estimated 5PRT. The random bin model is chosen because

of its small on-line storage and processing requirements and its

placing of the interval widths by the training samples.
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Appendix IV.1 - Discussion of Convergence Proofs of Density Estimates

This appendix discusses some factors involved in showing con-

vergence of density estimates. Parzen [16] shows convergence of his

estimate in the mean square sense. Lof tsgaarden and Quesenberry [17]

show convergence in probability, and this report shows convergence

of the random bin density estimate in probability. Mean square

convergence is a stronger form of convergence, and in fact it implies

convergence in probability. The reason that convergence of the NN

and random bin models has been shown in probability appears to be

that their structure makes convergence harder to prove (it should be

noted that it has not been shown that they do not converge in the

mean square sense or with probability one).

The basic form of a density approximation is

p (observation e 0)	 (IV. l.1)
0

As mentioned in Section I1I.2, a density estimate can either specify

the denominator and estimate the numerator or specify the numerator and

estimate the denominator. The Parzen model estimates the numerator,

and the NN and random bin models estimate the denominator. Because

of this, it is more difficult to find the means and variance of the

NN and random bin models. Estimating the denominator of equation

(IV.1.1) means estimating the interval width that contains a specified

fraction of the training samples. Distributions of order statistics

are involved, and it is difficult to calculate the variance of interval
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width estimates from the densities of order statistics. Estimating

the numerator of equation (IV.1.1) involves estimating F(x+h) -

F(x--h), which has a variance that is easier to find.

To illustrate the factors discussed in the preceding paragraph,

some examples will be given of the type of calculations involved for

finding the variances of density estimates. Let the density estimates

be based on Xl ,X
29

...,Xn where Xl,X2,...,Xn are independent random

variables identically distributed as the random variable X with

absolutely continuous distribution function F(x) and with probability

density function f(x).

The first density estimate Parzen considers is

Sn	 n(x+h)-S (x-h)

f Parzen (x)	 2h
(IV.1.2)

where Sn (x) is the fraction of samples less than x. The covariance

r	 of Sn (x) and Sn (x') is [ 141

cov(Sn(x),S(x')) a n IF(min(x,x'))- F(x)F(x')1 •

For the general Parzen estimate

1	 n	 x°xi

f Parzen (x)  	 nh J=1 K( h ) ,
(IV.1.3)

Parzen shows that

lim nh vartfn (x)1 - f(x)	 K2(y)dy .	 (Iv.1.4)

n-)-w

It is evident that the limit of the variance of Parzen estimate can
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be found and mean square convergence can be shown.

The NN density estimate is

f NN (X)	
,nl 

/2 I x-x. l
	

W.1.5)

where x  is the Q-th nearest sample to x. The NN estimate involves

order statistic theory. In making calculations on the NN estimate,

the type of density function involved is that of the k-th largest

sample y  whose density is

t

(k-1)n(n-k): [1- F (yk) I n-k [F (yk ) l k-1f (yk)	 (IV.1.6)

The random bin estimate is

fRandom (x} 	 k+l	 ( J+1- I
) for	 < x <	 (IV.1° 7).

bin	 k+l k+l	 k+1	 k+l

r.
where E p = 

y[np]+1 
is the estimate of the p-th order quantile Ep.

The random bin estimate also involves order statistic theory,

and the type of density function used for making calculations on

the random bin estimate is that of the joint density of p and q,

which is

(i-l)!(jni-1):(n-j): [F(tp)]i-l[F(Y-
Mp)]j -i-1

where p < q, i = [np]+l, and j - [nql+1.
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Since it is difficult to find explicit expressions for the

variance of random variables with density ftLnctions in equations

(IV.1.6) and (IV.1.8) and with F(x) and f (x) unknown, explicit

expressions for the variance of the NN and random bin estimate

are even more difficult to find. Thus the convergence of the

NN and random bin estimates has been shown in probability by

methods that do not involve finding explicit expressions for the

variance A the estimates, such as using asymptotic distributions.

i



CHAPTER V

ESTIMATED SPRT

Chapter IV developed a density function estimate with the intent

of utilizing it in a classification procedure. This chapter discusses

the Wald sequential probability ratio test (SPRT) and then forms an

estimated SPRT with the random bin density estimate. The SPRT has been

chosen since the decision problem involving the EEG responses

discussed in Section 1.2 is particularly well suited for a sequential test.

Also a SPRT with density estimates presents some additional interesting

problems which occur only infrequently in tests that decide on the

basis of only one observation such as the Bayes decision rule. Some of

these problems that will be investigated in this report are estimating

densities in the tail regions and estimating densities of dependent

observations.

V.1 Review of SPRT

A veil-known sequential test is the Wald SPRT [4,28,29]. In the

SPRT, the error probabilities are specified

a A p(error of type I) = p(decide C 2 jCl true)

s ^ p(error of type II) ® p(deeide C11C2 true)	 (V.1)

Define the likelihood ratio of t observations

f(x1,x2,..,,xtIC2)
L(xl,x2,...,xt)	 1	 (V.2)

f (x 
1 , 
x2 ,

 

0049 X 

t  
I C }

and two thresholds

A = 1-F
	 a = lea	 (V.3)
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The operation of the SPRT is as follows.

1.) Take the first observation x 1 If

	

L(x1) <1 B	 decide C1

	

B < L(xl ) < A	 observe the next observation x2

	

L(xl) 3 A	 decide C2

2.) If another observation is taken, say the t-th observation xt,

	

L(xl ,x 2 ...6,x t) 4 B	 decide C1

	

B < L(xl,x2,... , xt) < A	 observe the next observation xt+ 1

	L(x1',x2,...,xt)	 B	 decide C2

3.) Repeat step 2 on the next observation until a dedision is made.

The SPRT takes r , .w observations until the information contained in the

string of observations is sufficient that the probabilities of type I

and type II errors in making a decision are equal to the specified values

a, and s respectively. The SPRT has the property that among all tests

for which a and ^ are specified, the SPRT requires the smallest number

of observations, on the average, to reach a decision [2,291.

When the observations xi are independent, the likelihood ratio can

be written as

f(Xl1C2 )f(x21C2) ... f(xtjC2)
2 1	 t	 f(x1IC1)f(x21C1)...f(xt^CI)

For convenience, in the remainder of the report f(x1C l} is written

f l (x) and f (x i C 2 ) is written f 2 W.
	 i

The SPRT obtains the information contained in a string of observations

}

by evaluating the density functions of each class at the observation
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values. Knowledge of the density functions of each class are required

for the SPRT, and so the test is not directly applicable to the case

where the only prior knowledge is that of training sets.

Fu [301 has developed a partially distribution-free version of

the SPRT that uses the training samples of only one class, sav C 1 . if

the samples from C 1 have an .arbitrary distribution function F(x),

I
then the samples from C ` are assumed to have the Lehman alternative

distribution, which is Fr (x), r>O. After each observation from the

unknown class is taken, two sets of samples are formed -- one from

samples of C 1 and the other by alternating samples of C 1 with observations

from the unknown class. The samples of bbth sets are ordered, and the

density functions of the two ordered sets are found. By assuming the

distributions of C 1 and C2 are F(x) and Fr (x) respectively , the ratio

of the densities of the two orderings is independent of F(x). This new

ratio of densities is used in the SPRT to determine if the second ordering

contains only samples from C 1 or samples from both C 1 and C2 . Fu has

used training samples from only one class and has assumed the distribu-

tion of C 2 is Fr
 W, r > 0, where F(x) is the distribution of C1.

The method presented in this chapter uses training samples from

both classes and forms an estimated likelihood ratio for use in the SPRT

from estimates of the density functions of each class. The method is dis-

tribution-free in that it does not require any knowledge of f 1 (x) and f2(x).

V.2 Random Bin Estimate in SPRT

V.2.1 Presentation of Random Bin Estimate in SPRT

Since the density functions f 1 (x) and f 2 (x) are unknown, they can

be estimated from training samples of each class, and an estimated

h
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likelihood ratio can be formed

L(x.,x2,•..,xt)

A	 A	 .^

€ 2 (x1)f 
2  

(x2 ) • • . t 2 (x t)

...f 1 (xI )f 1(x2	 f} 	 1(xt)
(V. 6)

Let

n1 be the number of training samples in class 1,

n2 be the number of training samples in class 2,
A

k1 be the number of quantiles for f 1 (x) ,
^

k2 be the number of quantiles for €2(x),

^
J-1, 2, ... , k1 be the k1 quantiles for f 1 (x) , and

k1+1

TI, J-1,2,...,k be the k 2 quantiles for f2(x)

k2+1

(V.7)

The estimate of L(xl , x2,•..,xt) formed from the random bin density

estimate is

L(xl ,x29 ... Oxt)

A	 A	 A
f 2 (xl ) f 2 (x2 ) ... f 2 (x t)

f1(x1)£1(x2)... f1(xt)
(V. 9)

where

1
f i (xi) k +1 /(^^+1

1	
k1+1

A	 A

for
kl+l	 kl+l

A

xi +1
kl+1

and

(V.9)

^	 _ 1
f 2 (xi) k2+1 l(fi9,+l

k1+1

_n	 ) for n k
kl+l	 k1+1

A
< xi < n k+1

k2+1

(V. 10)
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If k  m k2 . k, the computation of L(xl,x2,...,xt) is reduced

since

	

(x )	 ,.

	

f 1 (xi )	 kl+l	 kl+l	 k2+1	 k2+1

where	
_ 

rk xi	s+1	 and n Q 19	 4 n,+1	 {V.11)

k1+1	 k1+1	 k2+1	 k2+1

Since f i (xl ), fi(x2),...,fi(xt) are estimated from the same

training samples, f i (xl), fi(x2),...,f i (xt ) are in general dependent, i=1,2.

So

E[fi(xl)fi(x2) ... f i (xt )1# Ef i (x1)Ef i (x2 ) ... Efi{xt)o

for 1-1,2	 (V.12)

M	
and L(xl , x29 ..., xt ) is a biased estimator of L(Yl,x2,...,xt).

But the next section shows that L(xl,x2,...,xt) converges in

probability to L(xl ,x2 , a. . , xt ) as n  } O° and n2 -* w and is thus

a consistent estimate (see also conclusion to this chapter).

V.2.2 Convergence of Likelihood Ratio

Theorem 3e Let Xi,X1,...,X1 , be a set of independent random
ni

variables identically distributed as the random variable X 1 with absolutely

continuous distribution function F 1 (x) and with probability density

function f l (x), and let X2'X2,...,X2 be a set of independent random
2

variables distributed as X2 with F 2 (x) and f 2 (x) similarly defined.

Let € 1 (x` ',e an estimate f l (x) and f 2 (x) an estimate of f2(x)
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where the estimates are defined in Theorem 2 of Chapter IV. Define

f2 (yl ) f 2 (y 2 ) • .. 
f 

t)
L(Y1PY29 .... yt )	 .,

f1(Y1)f1(Y2) ... ^(yd

Then L(yl,y2,..., yt) converges in probability to

f2(y1)f2(y2)... f(yt)
L Ey1 ,y2,...,yt) a	

,
f 1 (y11

-F l. (y2 ) • .. f (yt)

as n  + co and n2 + 00 for all Y1 ,Y2 ,... 
'yt in the neighborhood of

which f l (x),fl(x),f 2 (x) and fa (x) are continuous and fl (x) 0 0

and f 2 (x) 0 0.

Proof: From Theorem 2, f l (yi ) converges in probabi city to f l (yi)

as n  + eo and f 2 (y i ) converges in probability to f 2 (yi) as n2 -+

The proof of the corollary follows directly from the theorem from

Krickeberg [ 31)	 that if the sequences of random variables fn ,	 nn ,..., P 

converge in probability to C,	 n,...,p then the sequence Wn,nn,..•Pn)

1,	 converges in probability to g(^,n, ... ,p) if g is a continuous function

and gQ,rj, ... ,p) is finite.

This section has proposed an estimated SPRT where the likelihood

ratio is formed from random bin density estimates of each class. The

estimated likelihood ratio of independent observations was shown to

converge in probability to the true likelihood ratio. The remainder

of this chapter discusses the application of the SPRT to classification

problems.
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V.3 Tail Region Estimation Problem in the Random Bin SPRT

One difficulty that occurs with a step-function density

estimate such as the random bin model is the estimatio-a of the tail

regions of the density function. As an example of this problem,

consider two overlapping density functions as illustrated in Figure

V.1 with their possible estimates in Figure V.2. Assume that an

estimated SPRT is being performed and that after t observations no

decision has been made. Thus

A
B < L(xl,x2,.,.,xt) < A

Suppose further that the observations to be classified belong to
^

class 1 and that the (t+l)--th observation is greater than k

k+l

This means that f
1 t+1
{x ) 0 and so

f 2 (x t+1)
L (xi ,x2,60.,xt'xt+1) 	

L(xl,x2,...,xt}{, - x----3	Co < A .
1 t+1

A wrong decision that the observations belong to class 2 is made.

A	 ^

Since f1(xt+1) 0 for any xt+1 > E k , a decision of class 2 is

k+l

made for any xt+l > k	 However, if the actual density functions

k+l
f Z (xt+1)

are known, it is possible that the ratio f (x } > B for
1 t+l

xt+1 >

	

	 k and that the ratio f2(xt+l)/f1(Yt+l) 
is sufficiently

k+l

small so

f 2 (xt+l}
B < L(x1,x2,...,xt,xt+l) 	

L(xl,x2,...,xt) f (x	 ) < A .
1 t+1



f (X IC')
	 f(XIC2)

- --	 X
FIGURE M I

Example of Two Overlapping Density Functions 	 e
1
00

f (XIC 1 )
	 f(XIC2)

I
I

A-	 X

A

7?k
k+1

A	 A	 A	 A	 A

C{	 C2	 77,	 7?2	 ^k
k+1	 k+1	 k+l	 k+1	 k+l

FIGURE M:.2

Example of Two Overlapping Random Bin Density Estimates
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Thus it is possible that after the (t+l)-th observation where

xt+l	 k the estimated SPRT decides class 2 and the true

k+l

SPRT makes no decision. Estimating the tail regions of a density

function to be zero causes more classification errors than desired.

When 
f1(xt+1)	

D, a decision is based on only the one observation

xt+l ; the information contained in the previous t observations is

neglected. The same difficulty is encountered when classifying
A

observations from class 2 that are less than n 1	 Experimental

k+l

results appearing later in this chapter verify that the tail region

problem does result in more classification errors than would be

expected from the specified error probabilities. A step-function

estimate does not cause excessive classification errors on obser-

vations between the tail regions since the likelihood ratio is not

zero or infinity. Consequently a decision is not automatically

made from the information supplied by the one observation.

The tail region problem occurs mainly when several observations

are considered, at once. If a classification process decides on the

basis of only one observation, such as the Bayes decision rule, then

estimating the tail regions to be zero may be acceptable. Since no

information additional to the one observation is to be taken, no

information is ignored by the likelihood ratio being zero or infinity.

Two techniques for handling the tail region problem are discussed

in the next few sections. The methods either estimate the tail

regions differently or vary the SPRT.

d^
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V.3.1 Requiring Several Observations to Fall in the Tail Regions

One solution to the tail region problem that has worked

experimentally treats the observations from the tail regions separately

from the likelihood ratio. The method makes a decision of class 2

if r observations fall greater than t k , refer to Figure V.2, and

k+l

a decision of class 1 if r ob&ervations fall less than n 1 	
Only

k+l

observations between n 1 and	 k are included in the likelihood

k+1	 k+l

ratio. A decision about a string of observations is made in one of

two ways, either by the likelihood ratio of observations between

rl 
1 
and k falling outside the thresholds A and B, or by the

k+l	 k+l

number of observations less than n 1 equaling r or the number of

k+l

observations greater than k equaling r.

k+l

The motivation for this solution to the tail region problem

is that more observations are used in the decision process if r

observations rather than one are required to fall in each tail region

before deciding. With an increase in the required number of observations,

the decision is more likely to be made by the SPRT rather than the tail

region test, and the combined test is likely to be more accurate. The

error rate is decreased by increasing r, but the average number of

observations required for a decision is increased. If r is made very

large, the observations in the tail regions do not contribute at all

to the decision process.
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A disadvantage of the technique presented in this section is

that the tail region treatment departs from the likelihood ratio

method of the SPRT. Since observations below n 1 or above	 k

k+l	 k+1

are not included in the SPRT structure, the error probabilities of

the altered test may differ from those specified in a standard

SPRT. The next section presents a method that estimates the tail

regions with a different density estimate and preserves the SPRT

structure for all observations.

V.3.2 NN Tail Region Estimate

Another way of handling the tail region problem is to employ

the nearest neighbor (NN) density estimate of Loftsgaarden and

Quesenberry explained in Section 111.4.1. The NN estimate is

A 	 = k nn-	 ` 21 x-xQ(n)^	 (V. 13)

where n is the number of training samples and x P.(n) is the Q(n)-th

nearest training sample to x according to the distance measure

1x-y1. This estimate is continuous in x and tends to zero only as

x approaches infinity. Disadvantages of the estimate are that all

training samples must be stored and the k(n)-th nearest sample to

x must be found for each x.

The NN estimate, however, can be used to advantage in the tail

regions. For any observation x below a certain value, the same training

sample is always the Q-th nearest sample to x, and the Same is true



For any x < 
Y 1 +y4 ,

2

y4 is 4-th nearest

sample

For any x > 
Yn -3+ Yn

Ift	 2

Yn-3 is 4-th nearest
sample

Yj	 Y2 
1	

Y3	 Y4	 Yn-3
	

I

	
Yn	 N3

yj +y4
	

Yn- 3+Yn

2
	

2

FIGURE ]Z:3

Nearest Neighbor Density Estimate for Tail Regions
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with Z = 4. Let 
y l' y

2'" ''yn be a set of n ordered training samples.

For any x less than the midpoint between yl and yQ , yQ is always

the i-th nearest training sample to x. So the NN density estimate

yl+yQ
for any observation x < 	 2 is

f (x)	
nl

	 2 1 x-yi l

	

(V.14)

The estimate in equation (V.14) is greater than zero in the tail

regions. The values of yQ and the midpoint of yl and y. are the

only information that needs to be stored for later use of the density

estimates of the tail regions. At the upper tail of the density,

y n+l-1 is always the 9.-th nearest sample to any x > (yn+1-Q,+'n) /2.

So

_	 y	 ^'y
f(X) = L-1 / 21 x-yn+1-R for x > n+2-Q n

(V.15)

The random bin density estimate with the NN tail region estimate

is illustrated in Figure V.4.	 1 = yQ where 9,	 k+lI + 1 (see

k+l

equation (1V.20)) is the smallest bin boundary. For any x < a

(yi + 1 )/2,	 1	 yR 
is the X-th nearest training sample to x.

k+l	 k+l

Similarly 
k	

yn+1-P, where t n- 0k^] is the largest bin boundary,

k+l

and for x > b ( k + yn)/2,	 k = yn+l-Q is the i-th nearest

k+l	 k+l

sample to x. The bins have been chosen so that each bin contains	 i

approximately [ k+l ] training samples. Referring to Figure V.4 again,

the density estimate still has not been determined for the regions

:r



C
w

A

fB (x) for ek < x < b
k+1

A	 n

f (x) —n 21 x -Ck

for x>b

A	 n

fA (x) for a <_ x :5 1

kk+1

A

f (x)= n1 /21 x- e 1 I
k+1

for x< a

A

f (X)= k+1 / (	 +1

A

-	 )
a

for	 ^j	 :5 x :5 e j 	 1

k+1 k+1 k+1 k+1

Y1
1
	 k	 b	 yn

k+1
	

k+1

	

A
	

B

	

a = (Y9 +e 1 )/2	 b =(^ k + Yrr)/2
k+1	 k+1

FIGURE y,4

Random Bin Density Estimate with NN Tail Region Estimate
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A = {xIa < x <	 1 } and B - {xl' k < x < b}. The density in

k+l	 k+1

regions A and B is estimated for the experimental examples in

this report by centering a bin from the NN model at the midpoint

of the regions. (a + 1 )/2 is the midpoint of region A, and

k+l

( k + W2 of region B. Thus with each bin containing £ samples,

k+1
(a+ 1 )

f W - Znl / 2	 2k+1 _ y for a < x < 1	 (V.16)

k+1

where ^y is the Z- th nearest training sample to (a+ 1 ) / 2, and

k+l

k + b

f B (x) = ^,nl 
/2 

k+ 	- ^y	 for k < x < b	 (V.17)

k+l

where B  is the L-th nearest training sample to ( k +
k+l

The density has a constant value throughout each interval A and B.

The tail regions were estimated by the NN model in the manner explained

in order to assure that the bins in the tail regions contain approximately

the same number of samples as the bins in the center region which had

been estimated by the random bin model.

V.4 Experimental Results of the Estimated SPRT Tested on Gaussian Data

This section shows the results of the SPRT with the random bin

density estimate tested on independent, scalar Gaussian samples. The

mean of the distribution from class 1 is -0.8, and the mean of class 2

ti
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is +0.$. The variance of both classes is one. Experimentally, a

good relationship between the number of training samples n and the

number of quantiles k seems to be k x n 1/2 . Lof tsgaarden and

Quesenberry [171 also state that on the basis of some emperical

work using their estimate a value of Q near 
n1/2 

appears to give good

results. For the fc.11owing examples, n - 999 training samples and k - 29

quantiles (giving k+1 - 30 bins) were used for each density estimate.

After the density functions of both classes are estimated, the

estimates were tested in the SPRT with one thousand test observations

from each class. The test was conducted with several values of the

error probabilities, a- p(decide class 21class 1 _rue) and 5 = p(decide

class 11class 2 true). The next two sections present the experimental

results for the two tail region treatments discussed in Sections V.3.1

and V.3.2.

V.4.1 Experimental, Results of the Estimated SPRT With r

Observations Falling in the Tail Re ion@

Section V.3.1 discusses the treatment of the tail region where a

decision is made either by the SPRT applied to observations between

the tail regions or after r observations fall in one of the tail regions.

Table V.1 shows the experimental results. Values of r from one to

five were considered. The error rates in Table V.1 for r - 1 represent

neglecting the tail region problem and allowing I I (x) and f
2 
(x) to be

zero for observations in the tail regions. It is observed that the

experimental error rates for r - 1 are indeed higher than the specified

a and ^. The error rates are decreased by increasing r. More obser-
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Experimental Results
Number

observations
in tail
regions for Experimental

Experimental average

= ^a decision rate
number observations

error
for decision 

r

Class 1 Class 2 Class 1 Class 2

.l 1 .084 .059 2.15 1.92

2 .044 .026 4.04 3.71

3 .064 .035 5.35 4.95

4 .051 .055 6.37 6.14

5 .058 .043 7.25 7.20

.01 1 .080 .061 2.49 2.12

2 .015 .088 5.13 4.39

3 .0075 0.0 7.A7 6.42

4 .019 0.0 4.45 8.20

5 0.0 0.0 11.11 10.0

.001 1 .081 .062 2.53 2.15

2 .016 .013 5.38 4.46

3 0.0 .0067 8.06 6.76

4 0.0 0.0 10.31 9.01

5 0.0 0.0 12.82 10.88

n = 999 training samples in each class	 k+1 = 30 bins

1000 test observations from each class

Gaussian -

Estimated SPRT with r Observations Falling in Tail Regions

TABLE V.1
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vations on the average are taken before a decision for the increased

r. From Table V.1, a value of r a 3 appears to be adequate to bring

the experimental error rates down to the specified a and a, and

r m 4 certainly appears sufficient.

V.4.2 Experimental Results of the Estimated SPRT with NN

Tail Region Estimate

The random bin density estimate combined with an NN density

estimate in the tail regions is discus s-Id in Section V.3.2. The

experimental results of the SPRT formed with this estimate are

shown in Table V.2. The parameter Z in the NN estimates (see

equations (V.14) , M15), (V.16), and (V.17)) is set equal to 33,

which is approximately the number of samples in each interval of

the random bin model. The experimental error rates in Table V.2

are observed to be below the specified a and ^.

V.5 Conclusion to Cha ter V

In comparing Sections V.3.1 and V . 4.1 with Sections V.3.2

and V.4.2, the NN density estimate appears to be a more satisfactory

solution to the tail region problem. With the NN method, the strudture

of the SPRT is preserved and the specified error probabilities a and R

retain heir meaning.

Section V . 2.1 mentioned that the marginal density estimates

f (xl) , f (x2 ) , ... , f (xi ) that multiply together to foam the j oint density,

(xl,x2,...,xt)	 f(x1Mx2) ... f(xt)

are dependent since they are estimated from the same training samples.
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1

Experimental Results

Average number

Experimental of observations
_ error rate required for

decision

Class 1 Class 2 Class 1 Class 2

.l .033 .046 2.75 3.29

.01 .005 .0062 5.0 6.21

.001

—L
0.0
—

0.0 7.14 9.09

n = 999 training samples in each class	 k+1=30 bins
1000 test observations from each class

Gaussian --

Estimated SPRT with NN Tail Region Estimate

TABLE V.2
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A

Thus, L(xl)x2,...,xt) is a biased estimator of L(x1,x29...,xt),

although the bias tends to zero as n + 00 . On inspecting

Table V.2, this dependence appears to have not adversely affected

the experimental error gates. The dependence is discussed further

in the next chapter. So far only scalar samples have been con-

sidered, and the next chapter also discusses multidimensional

samples. .



CHAPTER VI

MULTIDIMENSIONAL SAMPLES AND DEPENDENT OBSERVATIONS

This chapter discusses some techniques for handling multi-

dimensional samples and dependent observations in the estimated

SPRT. In considering multidimensional samples, the symbol s

denotes the total number of dimensions or features of a vector

sample, and the number of a particular feature is indicated by

a superscript, for example x i is the i--th feature of the sample

X a (x1 2	 , s,x ,...x )	 .	 (VI.1)

VI.1 Multidimensional SPRT

One method of classifying independent multidimensional observations

with the SPRT is simply to form the estimated likelihood ratio with

multivariate density estimates

f (xl,x2,...,x1
2	 1	 1SL(xl,x2,. ... xt	 1	 2

f 1 (x, $ Xi ,

l	 22)f	 (xl,x2,...
2 ' 

xs
2
)...f

2 
(xl ,x2

t t'
...	 xs )

9	 t
s	

.
... ,xt)

s n	 1
... ,xl ) f l (x21 x2 ,

2 ...
s

,x2)
1... € 1 (xC xt ,

2

(VI. 2)

But estimating the density of an s-dimensional random variable requires

a large number of training samples. As the dimension increases, more

bins are needed to maintain deterministic accuracy, and then more

training samples are needed to assure random accuracy by each bin

containing an adequate number of samples.

The approach used in this report for treating multidimensional

samples is to transform the vector samples into scalars such that the
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new scalars are random variables whose univariate density functions

can be estimated. The estimation of the univariate densities of the

scalar transformed samples requires fewer training samples than

the estimation of the multivariate densities of the original vector

samples. While multivariate density estimates are not considered

in this thesis, Appendix VI.1 briefly discusses how the density

estimates mentioned in Chapters III and IV can be extended to the

multidimensional case.

VI.1.1 Linear Combination of Features

As mentioned in the previous section, if the multidimensional

samples of each class are transformed into scalars, the simpler

univariate density functions can be estimated with fewer training

samples. The estimated SPRT can be formed with the ratio of the

univariate density estimates of the transformed samples of each class. In

essence, a new classification problem has been formulated involving only

scalar samples where the two classes of scalar samples are the transformed

original multidimensional samples of the two classes.

Among the infinite variety of transformations that can be chosen,

a transformation should be selected such that

i) the transformed scalar possesses the various properties

required for the estimation of its density function and SPRT as dis-

cussed in Chapter IV, and

ii) the transformed scalar samples of the two classes should be

separated as much as possible in some sense.

This section explores the use of a linear transformation

®i
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Z = Ylx1 + Y2 X2 + ... + Ysxs
	

(V1.3)

where 'yi , i=1,2,...,s are weighting factors. A linear transformation

has been chosen because of the ease of finding such a transformation.

if (X1,X2,...,Xs) is an s-dimensional random variable of the continuous

type, then Z = ylX1 + Y 
2 
X 2 + ••• + ySXs is a random variable of the

continuous type and Z satisfies all the required properties presented

in Chapter IV for the estimation of its density. The choice of

linear transformations to separate classes of training samples was

discussed in Section 11.4.1. Section 11.4.1 mentioned that many

algorithms have been developed for placing a separating hyperplane

between two classes of samples [1], and that the equation of such

a separating hyperplane can be used as a linear transformation to

reduce the multidimensional samples to scalars. The specified error

probabilities a and R of an SPRT can still be met if densities of

scalar transformed samples are used instead of the original multi-

dimensional samples. The knowledge of the multidimensional density

estimates, however, would be expected to provide more decision making

information than knowledge of the density estimates of the transformed

samples. The information loss of transformed density estimates occurs

in an increase in the average number of observations required for a

decision. Nevertheless, the advantages of scalar transformed samples

are fewer training . samples needed to estimate the density and the

simpler calculations for a univariate density estimate.

i

^v
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VI.1.2 Discussion of EEG Data

Experimental testing of the SPRT with a linear combination of

features was performed on the same EEG data that was used for exper-

imental testing in Chapter II. The classification problem with EEG

is outlined in Section I.2, and Appendix 11.2 analyzes the EEG

data in detail. The classification problem is to decide if an

arbitrary string of EEG responses are stimulated by a subject where

class 1 : no light is flashing (normal response)

or

class 2 : a light is periodically flashing into the subject's

eyes (evoked response).

As mentioned in Chapter II, the length of responses between the

flashz^s is one hundred milliseconds, and each response is considered

to be an observation or sample. The waveforms measured from the

patient are continuous and were converted to vector samples by sampling

the amplitude every millisecond. The sampling resulted in a one

hundred dimensional vector. Since a dimension of one hundred was

quite large, five features out of the hundred were selected for the

classification process. The feature reduction scheme of Prabhu f l ]

(the feature reduction scheme is explained in Appendix II.I) was used

to select the five features which have the most classification infor-

mation according to a criterion that separates the sample means of the

two classes and minimizes the sample variance about the means. A linear

transformation was applied to the samples with the coefficients of a
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separating hyperplane determined by the scheme of Prahhu.

The random bin density model was estimated for each class from

999 transformed training samples. The number of quantiles was k = 29.

An SPRT formed from the density estimates was tes~ed on one thousand

transformed observations from each class. The next two sections

show the test results for the random bin SPRT with the two tail region

treatments discussed in Sections V.4.1 and V.4.2.

VI.l.3 Experimental Results of the Estimated SPRT with r

Observations Falling in the Tail Regions - EEG

Table VI.1 shows the EEG experimental results where a decision

is made either by r observations falling in a tail region or by the

SPRT applied to observations occuring between the tail regions.

Values of r from one to five are treated and three different specified

error probabilities a and $ are considered. On inspecting Table VI.1,

it is seen that the experimental error rates are on the order of the

specified probabilities of error if r equals four or five. Comparing

Table VI.1 and V.1, the error rates for the EEG samples are higher for

the same values of r than for the Gaussian samples. The EEG responses

as they occur serially in time are dependent, and so the independence

assumption is not met. Independence was assumed both for saying that

the joint density of several observations is equal to the product of

marginal densities and for estimating the marginal densities from

training samples. The dependence accounts for the higher error rates in

Table VI.1. Also the EEG signals are slightly nonstationary.
i
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Experimental Results
Number

observations
in tail

regions for Experimental
Experimental average
number observations 

a ^ S decision error rate for decision 
r

Class 1 Class 2 Class 1 Class 2

.1 1 .105 . o45 2.09 2.08

2 .074 .047 4.1 3.91

3 .067 .053 5.62 5.32

4 .067 .062 6.75 6.25

5 .061 .068 7.58 6.85

.01 1 .104 .043 2.36 2.39

2 .049 .029 4.95 4.81

3 .029 .028 7.46 7.05

4 .019 .018 9.61 9.26

5 0.0 .02 11.9 11.1

.001 1 .10 .034 2.41 2.44

2 .051 .020 5.01 4.95

3 .031 0.0 8.06 7.58

4 0.0 0.0 10.65 10.0

5 0.0 0.0 12.8 12.5

n = 999 training samples in each class	 k+l = 30 bins

1000 test observations from each class

EEG -

Estimated SPRT with r Observations Fall.Lng in Tail Regions

TABLE VI.1
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VI.1.4 Experimental Results of the Estimated SPRT with

NN Tail Region Estimate - EEG

Table VI.2 shows experimental results for the SPRT with the

tail regions of the densities estimated with the NN model. The para-

meter Q for the NN estimate (see equations (V.14), (V.15), (V.1E)1

and (V.17)) was set equal to 33 so each bin whether from the random

bin or NN models contained approximately the same number of training

samples. The experimental error rates in Table VI.2 are observed

to be higher than the specified a and 0. As mentioned in the previous

section, the observations are dependent, and the independence assumption

is violated. The neat section discusses a method of overcoming the

problem of dependence of observations.

VI.2 Dependent Observationsv

So far in this thesis the observations have been assumed to be

independent so that the joint density of t observations f(xi,x2,...,xt)

can be expressed by f(x 1 )f(x2 ) ... f(xt }. The method presented in this

section treats dependent observations by using the density of the sum

of t observations rather than the joint density of t observations.

VI.2.1 Using the Sum of Observations in the SPRT

The method to be presented for testing correlated features is a

variation of the approach of taking a linear combination of the features

of multidimensional samples. In the usual SPRT, the likelihood ratio

of t observations is
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Experimental Results

Average number
Experimental of observations

_a r
error rate required for

decision

Class 1 Class 2 Class 1 Class 2

.1 .136 .0345 2.83 2.47

.01 .0698 .0092 5.81 4.63

.001 .0517 0.0 8.62 6.67

n = 999 training samples in each class 	 k+1=30 bins
1000 test observations from each class

EEG

Estimated SPRT with NN Tail Region Estimate

TABLE VT.2
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f2(xl,x2,...,xti
(VI .  ► )

fl(xl,x2,...,xt)

and if the observations are independent, the ratio can be writter as

f 2 ( xI) f 2 (x2) ... f 2 (x t)

f l (x1) 
f 
l (x2) ... f l (xt )

(VI .5)

If the observations are dependent, the two likelihood ratios are

not equal, and the error rates of the dependent EEG samples in

Table VI.2 where the likelihood ratio in equation (VI.5) is used

are indeed higher than the specified error probabilities. Instead

of the likelihood ratio of the joint densities of t observations, a

possible likelihood ratio is that of the densities of the sum of t

observations

f2(xI+x2+...+xt)

f1(x1+x2+... +xt)
M. 6)

t
The sun of t observations	 xi is a scalar, and thus the estimate

i=1
of this likelihood ratio involves estimating only univariate density

functions. ThE likelihood ratio in equation (VI.6) is exact even

if the observations are dependent. In essence, a new random variable
t

xi has been defined. If the X i , i=1, 2, ... , t, are random -7ariables
i=1	 t
of the continuous type, then	 Xi is a random variable of the

i=1
continuous type and satisfies the 7.equirements presented in Chapter

IV for its density function to be estimated. A string of observations

can be classified by the SPRT formed 5.th the likelihood ratio of

equation (VI.6). While the SPRT formed with the new likelihood

t'^-
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ratio can meet the specified error probabilities, the sum of t observations

contains less decision making information than the values of the

separate t observations. The loss of information results in a greater

average number of observations being required for the test to make a

decision. Thus the new test no longer has the property of the regular

SPRT that among all tests for which a and 6 are specified, it requires

the smallest number of observations to reach a decision on the average.

But using the likelihood ratio of the sums of observations provides

a test that is exact for dependent observations and that involves only

the densities of scalar samples.

In discussing the likelihood ratio in Section V.2.1, the product

of estimated marginal densities was substituted for the estimated

joint densities since the observations are independent. But because

the marginal densities are estimated from the same training samples,

they are dependent and

n	 n	 n	 n	 /W

E ( f (x1Mx 2 )  ... f (x t ) # Ef (x1 ) Ef (x2 ) ... Ef (xt)

(although equality does hold as the number of training samples

apnroaches infinity). The product of marginal density estimates was

used, however, since the estimation of the t-variate density f(xl,x2,..,,,xt)

for large t r^ ,quires a large number of training samples. The estimated

likelihood ratio of the sums of observations avoids any problems associated

with the dependence of marginal density estimates.
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VI. 2.2 Practical Consi' rations in Using the Sum of Observations

in the Estimated SPRT

If the estimated SPRT is performed with the likelihood ratio

of the sum of observations, the density functions of the random
t

variables	 xi need to be estimated,
i=1

4
Ph

f (xl ), f (x1+x 2), ... ,f(	 xi),,..
i=1

The random variables are scalars so the density estimation is

straight forward. But in an SPRT, the number of observations t

may become large, and the number of training samples needed to
t

estimate f(	 x ) increases as t increases. To obtain m different
i

t	 t
samples of	 x, for the estimation of f(	 x ), mt samples of x

i=1 1	
i

i=1 
are required. For a finite number of training samples, it is

t
possible to accurately estimate f( 	 x i ) for only smaller values of t.

i^ 1
In the experimental results of the next section, the maximum number

of observations summed together is six so that an adequate number

of summed samples would be obtained from which to estimate the densities.

In a string of observations larger than six, the product of several

densities of sums is taken. For t observations, the ratio would be

6	 12	 tf ( 1 x )f ( I x) • • • f (	 1	 x.)
2 
i=1 

i 2 
i=7 

i	
2 i=[t/6]6+1

1 
iL1 

i 1 
i=7
 1	

1 i=[t 616+1 1



VI-a2

This ratio is of course equal to equation (VI.6) only if

6	 12	 t

I x, I x ,...$	 x are independent. However,
i=1 

i 
i=7 i	 i=[t/6]6+1 i

equation (VI-7) provides better results than equation. (IV.6)

because for t observations equation (IV.7) assumes the independence

of [t/6]+1 random variables and equation (VI.6) that of t variables.
6

Also if xl,x2,...,x12 are dependent, the dependence between 	 xi

12	
i-1

and I xi is less than that between two consecutive x i 's. When
i=7

u is the maximum number of observations in any sum, the general

expression for the likelihood ratio is

U	 2u	 t	 -
f 2 ( 1 xi) f 2 ( I xi)... f2	 E	 xi)

i=1	 i=u+l	 i- [ t/u ]u+l 	 (VI . s)
u	 2u	 t

	

fl( I xi) f l ( I xi) ... fl(	 1	 xi)

i=l	 i-u+l	 i=[t/u]u+l

VI.2.3 Experimental Results of Using the Sum of Observations -

EEG

Table VI.3 shows the experimental results of the estimated

SPRIT formed with the ratio of actimater3 de-nsities of ads of obser-

vations. The EEG data discussed in Section VI.1.2 was used. The

maximum number of observations summed together is six, which means

that the densities of the sums of one, two,..., and six observations

need be estimated,

„	 6
f(% 1 ) , f (x1+x2) , ... , f (	 xi)

i=1

The total number of training samples used was 1476, and so the densities
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Experimental Results

Average number
Experimental of observations

a = error rate required for
decision

Class 1 Class 2 Class 1 Class 2

.1 .0618 .0278 5.67 5.55

.01 0.0 0.0 16.4 13.9

.001 0.0 0.0 25.6 20.8

1476 training samples,	 k+l = 15 bins

246 sums of 1,2,...,6 samples
in each class

1000 test observations for each class

EEG

Estimated SPRT Using Sums of O.aervations in

Random Bin Density Model with NN Tail Region Estimates

TABLE VT.3
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were estimated from 246 groups of six training samples (1476 was

the largest number of training samples available for experimentation

that was divisable by 6.) The densities were estimated by the random

bin model with fifteen bins combined with the NN model in the tail

regions.

The experimental error rates in Table VI.3 meet the specified

error probabilities. The error rates in Table VI.3 are lower than

those in Table VI.2, which shows the results of the product of

marginal density estimates, but Table VI.3 requires more observations

on the average for a decision. Increased accuracy has been gained

by using the sum of observations.

VI.3 Conclusion to Chapter VI

This chapter has discussed some ways of handling multidimensional

and dependent samples. For multidimensional samples, the samples are

reduced to scalars by a linear transformation; for correlated samples,

the likelihood ratio of the sums of observations is taken. The objective

of these procedures is to allow univariate densities to be estimated

rather than joint densities. Increased accuracy in the error rates

has been achieved, but the average number of observations necessary for

a decision has increased.

1

I

F



w

VI-15

Appendix VI.1 - Multivariate Extensions of Density Estimates

Considered in Chapter III and Chapter 1V

The presentation of multivariate density function models in

this appendix is brief and is intended only to indicate ways the

models are generalized to multidimensional samples. The dis-

cussion is not detailed, and convergence conditions are not shown.

The approach in generalizing the marginal density estimates

to multidimensional samples is to extend the interval A in equation

(II1.2), which is repeated here

lim p (observation E A)	
f (x)

n-KO
D

to a multidimensional volume element.

Multidimensional Fixed Bin Estimate

The extension of the fixed bin model (see Section 111.3.1)

to the multidimensional case is straightforward. Instead of

specifying bins in one dimension, bins are constructed in s dimensions.

The multidimensional equivalent of the fixed bin model Is

n 1 2	 s	 number of samples in bin i	 volume of
f(x ' x '°°'' x )	 total number of samples	 s--dimensional

bin i

(V1.1.1)
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Multidimensional Parzen Estimate

The Parzen estimate (see Section 111.3.2) can be generalized to

the multidimensional case by replacing the one dimensional interval by

a multidimensional volume element. To obtain the density es~ 4 mate, the

fraction of training samples in an s-dimensional bin centered at x is

divided by the volume of . the bin,

^ 1 2	 s	 number of sam2les in bin centered at x	 volume
f (x ,x , ... , x )	 total number of samples 	 of bin

(VI.1.2)

The general Parzen estimate in equation (111.5) is extended by using

kernels of s variables.

Multidimensional NN Estimate

Loftsgaarden and Quesenberry [17] give the multidimensional

generalization of their estimate. Centered at x is an s-dimensional

hypersphere whose radius is the distance from x to the L(n)-th

nearest sample measured by some metric d(x,xQ(n)). The estimate in

equation (111.9) extends to

f x 
x

1 2
	 s	 Q(n)-1	 volume of hypersphere

{	
•• x

 ) =	 n	 / of radius d(x,x9.(n))

Y,(n)-1	 2[d(x,xUh). N
 s s/2

TT

n /	
CIO2
{)2

(VI.1.3)

where 
xM) 

is the k(n)-th nearest traiaing sample to x.
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Multidimensional Random Bin Estimate

In extending the random bin estimate to the multidimensional

case, the objective is to cover the s-dimensional sample space with

S--dimensional bins while letting the boundaries of the bins be

determined by the training samples. The multidimensional estimate

is presented by considering a two dimensional example. Figures VI.1

and VI.2 can be consulted to provide visual illustrations. As shown

in the figures, the multidimensional estimate partitions the sample

space into volume elements where each element contains the same

percentage of training samples.

First, the sample space is partitioned into strips parallel to

the x2-axis in such a way that each strip contains an equal fraction

of the training samples. See Figure VI.1. The n two dimensional

samples,

(x 1,x2),(x2,x2),...,(xn,x2	 (VI.1.4)

are ordered according to the values of the first features,

(X1 ,xi),(xI ,x2 ),...,(x1 ,xi }	 (VI.1.5)

1 1	 2	 2	 n n

where

X	 x1 C ... < x1
1	 2	 n

Such an ordering uses an ordering function 9 1 (x1 ,x2 )	 xl. Let

the integer k  be the number of lines drawn to partition the xI--axis.

Then k  of the first features in equation (VI.1.5) are selected and

__.1
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X2
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Figure V1.1 First Step in Bin Placement for Multivariate
Random Bin Density Estimate
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x

x	 n	 x
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Figure VI.2	 Bin Placement for Multivariate Random Bin
Densitv Estimate
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labeled according to

^J— = xi

k+l	 [k
1 

in
for j =1,2,...,kl .	 (VI.1.7)

So a set of k  first features is chosen, { 	 1	 2 ,.•., kl ) .
k1+1 k1+1	 k1+1

Lines are drawn parallel to the x2--axis through the k  samples whose

first features have the values specified in equation M.1-7). The

strips between the lines each contain approximately the same number

of training samples.

Each strip is now partitioned separately into k 2+1 parts by

drawing lines within each strip parallel to the x i-axis as shown in

Figure VI.2. Each segment is to contain approximately the same

number of training samples. The partitioning procedure of each

strip is shown by considering one strip, say the p-th strip. Let

n  be the number of samples in the p-th strip. The fact that the

p-th strip is being considered is indicated by placing a superscript p

on the pairs of parentheses enclosing the samples in the p-th strip,

1 2 p	 1 2 p	 P

	

(x1Vxl) ,(x2:x2) ,..., {xn 
, xn )	 .

P	 P
U1.1.8)

The samples in the p-th strip are ordered according to the values

of the second features

(xj 1 xj f, (uj , xj ) p ,..., (xj	
'xj )P1 1	 2 2	 n	 n

P	
p

(V 1.1.9)	 i
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where

(x2 
< x2 < ... < x^	 )

1	 2	
n 

The ordering function that has been used for this is 9 2 (x1 x2 ) = x2.

Select k 2 of the second features from the set in equation (VI.1.9)

and relabel them according to

tj p	 = x

k2+1	
Qnp +1

k2+1^

Q = 1, 2,..., k2 . (VI.1.10)

So a set of k2 second features

(np 1 	 np2	 T1k	 )
k2+1	 k2+1	 k22+1

has been chosen from the samples in the p-th strip. Lines parallel

to the x I-axis are " yawn through the k 2 Gamples in the p-th strip

whose second features have the values given in equation (VI.1.10).

The lines extend only between the boundaries of the p-th strip as is

shown in Figure V.2.

The other strips are also partitioned by the method explained in

the previous paragraph. The two dimensional sample space is now partitioned

into (k1+l)(k2+1) parts as in Figure VI.2. The density estimate for

any observation x = (xl , x2 ) is

A (xl 2,x	 (k +l) (k +1)) =	
1	

(^) (nom n^^ ) (VI.1.11)
l2	 /	 1	 +1

k1+1 k1+1 k2+1 k2+1
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where	 p	 C' x l < ^ and riP 3 1C x 2 1C Ttj+1 .
k 1+1	 k1+1	 k2+1	 k2+1

F	 and 
Tj	

are defined by equations (VI.1.7) and (VI.1.10) .

kl+1	 k2+1

The density estimate in equation (VI.1.11) has involved a

partitioning of the sample space with ordering functions. Ordering

functions other than g l (x1 ,x2 ) = xi and a,(x 1 ,x2 ) W x2 could be

chosen. The estimate can be extended to more than two dimensions

by repeating the procedure of partitioning the sample space for

the additional dimensions.

The approach to the multivariate random bin density estimate

explained in this appendix has a possible drawback. In the presentation

of the biLvariate extimate, bin boundaries are first placed parallel

to one axis, and then each of these intervals is subdivided. This

method does not treat the samples symmetrically. Long, thin bins

may result where wider, shorter bins would be more desirable. By

using several different ordering functions during the partitioning,

it may be possible to modify the method to overcome thi s difficulty,



CHAPTER VII

CONCLUSION

VII.1 Concluding Remarks

Two sequential, distribution-free pattern classification

procedures have been presented. Estimates of the probabilities of

misclassification have been given, and experimental results of

testing on Gaussian and EEG patterns agree with the estimated error

rates. An estimate of a probability density function has also been

proposed.

In the method based on order statistics, a set of thresholds

is determined from the training samples, and each observation in the

sequential test is compared to a different pair of thresholds denend-

ing on the particular iteration. In the method based on the SPRT,

the likelihood ratio is estimated from the training samples. The

estimated likelihood ratio is then updated to include each new

observation and is compared to the same pair of thresholds through-

out the test.

The information carried from one iteration to the next in the

sequential test based can order statistics is that the previous obser-

vations fell in the intervals between their respective thresholds

at each iteration. In the estimated version of the SPRT, the two

density functions are estimated at the values of the observations,

and so more precise information about the location of the observations

is carried from one iteration to the next. The estimated SPRT uses
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local information of the training samp les near each cbservation while

the order statistics method considers, all training samples at once

to determine the thresholds.

When the number of training samples is limited, a smaller error

rate is experimentally easier to obtain with the estimated version

of the SPRT. As mentioned in the previous paragraph, the estimated

SPRT uses more precise information on the location of the observations.

The method based on order statistics determines the thresholds

directly from the training samples. If the specified probability of

misclassification at each iteration is small, the intervals outside

the thresholds will contain fewer training samples, and consequently

the accuracy of the estimated probability of a future observation

falling in these intervals is less. The specified error probabil-

ities may also be so small that the number of training samples that

are calculated to be contained outside the thresholds is less than

one. In the estimated SPRT, density functions are estimated from

training samples; the number of samples in each interval of the step-

function density estimate is a parameter of the density estimate

and is independent of the desired error rate. Each bir. of the density

estimate can be required to contain several training samples, and

thereby the accuracy of the density estimate can be controlled.

Thus when the number of training samples is limited, the estimated

SPRT performs better at smmller error rates.

The estimated SPRT has fewer prior assumptions about the

pattern classes. Chapter II mentioned that in order to use the

order statistics method the pattern classes should have one region
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of overlap such that when multidimensional samples are transformed

to scalars the new scalar samples of one class lie largely

below those of the other class. The order statistics method with

a linear transformation cannot solve decision problems where the

samples of one class are surrounded by those of the other class.

The estimated SPRT, which estimates density functions, does not have

this restriction. But the order statistics procedure is simple to

implement and is well suited to the case where the two classes

can be separated to a degree by a linear transformation.

The number of training samples would be expected to influence

how small an error rate can be obtained and the accuracy of the

predicted error rates. Arbitrarily small error rates would not

be expected to be obtainable from a limited number of training

samples due to inaccuracies in the estimation proctddres. The

experimental error rates presented in this thesis do agree with the

predicted error probabilities. In fact for the estimated version of

the SPRT, error rates as small as .1 percent were obtained with

100 training samp les from each class.

VII.2 Suggestions for Future Work

i) The approach taken in this report for treating multidimen-

sional samples was to reduce them to scalars by a linear transformation.

Linear transformations that separate the two pattern classes were

selected. A possible area for future work is to investigate the use

of nonlinear transformations. Improved separation of the two pattern

classes might be obtained with nonlinear transformations, and the
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average number of observations taken for a decision would be expected

to decrease. Also, different transformations might be used in different

regions of the sample svace.

ii) More efficient use of the observations taken in the sequential

test based on order statistics may be possible by comparing all the

observations taken up to each iteration with the latest pair of thresholds

instead of only comparing the most recent observation. The calculations

for the thresholds should be modified to take into account that all

previous observations are being compared to the thresholds at each

iteration since the estimated probabilities of taking the next

observation are now different, By comparing all observations, the

sequential test would be expected to make a decision after taking

€ewer observations.

iii) Some improvement in the random bin density estimate

might be possible by developing an interpolation technique to smooth

the estimate so that it is continuous rather than a step-function.

Also, it may be possible to generate a continuous estimate of the

distribution function by an interpolation procedure and use it in the

sequential test based on order statistics. With a continuous distri-

bution function estimate, the thresholds could be pleced more pre-

cisely for the desired error rates rather than setting thresholds only

equal to the values of training samples.

iv) The density estimate proposed in this repor t is a step-function.

This means that the distribution function is approximated in each interval

by a linear curve. An improved density estimate might be obtained by

fitting a nonlinear curve in each interval. There is a set of m
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sample values fxi}, i=1,2,...,m, in each interval and a set of estimated

distribution function values for these samples {F(x i ) ), i=1, 2, ... ,m.

A non-linear curve could be fitted to these points, and the density

function would of course be the derivative of the curve. It should

be kept in mind, however, that F(x) is only an estithate of F(x),

and no matter how sophisticated a curve is fitted, there is an in-

accuracy from the estimated function values. 5o the improvement

in a density estimate by fitting a non-linear curve may be limited

by the accura-; of estimating F(x). But some improvement in the

estimation accuracy should be possible by using a nonlinear curve

since the deterministic approximation to the density function may

be better and hence the bin width may be wider. Thus the bin may

contain more training samples. The tradeoff remains between 1.) increasing

the bin size to contain more samples and hence increasing the accuracy

of the estimation, and 2.) decreasing the bin size to obtain a better

deterministic approximation to the density function; but it may be

possible to change the balance point.

F
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